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CHAPTER 5. ESTIMATING THE GROWTH RATE OF A FUNCTION 

 
5.1 The definition of a good and a bad estimate for a function 
 

As I mentioned at the end of Chapter 3, you need to study functions because the time 
taken to execute a program depends upon the size of the input you enter into the program.  Of 
course, it also depends upon the computer you are using – the latest supercomputer will execute 
the same program on the same input faster than some old vacuum-tube antique – so to make your 
analysis independent of the computer you use, instead of measuring the time taken to execute the 
program you count the number of operations the computer will perform while executing the 
program.  And to make your analysis independent of the computer language you use, instead of 
programs you consider algorithms, which are like programs except that they are written in human 
language instead of a computer language. 
 
 But you don’t count the exact number of operations because the formula for the exact 
number of operations is usually too complicated to be useful for comparing the speed of different 
algorithms for solving the same problem.  Suppose, for example, that you want to sort an array of 
size n and you have a choice of two algorithms: algorithm S that will do 2n2 − n + 3 operations 
and algorithm M that will do 10n log2 n + 8n + 2  operations (I’m making the coefficients up).  
Which one should you make into a program?  You won’t find either of these functions in a table 
because they don’t make tables with an entry for each list of coefficients; so, being a practical 
sort of person, you program both algorithms and, to avoid using up valuable computer time, you 
run both programs on an array of size 8.  Algorithm S does 123 operations and algorithm M does 
248 operations; so you conclude that algorithm S is faster and you run it on the array you really 
want to sort, which has 1000 elements.  The computer does 1,999,003 operations, and if it’s as 
slow as an Apple 2e, which does about 1000 operations a second, it takes about half an hour to 
sort your array.  How long would algorithm M have taken?  Well, the lunatic who thought that 
210 = 1000 wasn’t that far off: 210 = 1024  (which is, after all, why they call 210 bytes a kilobyte); 
so log21000 is close to but less than 10 and algorithm M would have done less than 108,002 
operations and taken less than 2 minutes.  You could have saved a half an hour of computing 
time, not to mention the time you took to program algorithm S, if only you had known how to 
estimate how fast a function of n grows as n gets big. 
 
 Given a function f(n), which represents the number of operations an algorithm will do on 
an input of size n, you need to find a function g(n) which is a good estimate for f(n) for large n 
and which is simple enough that you can easily compare the growth rate of functions by 
comparing their estimates.  What does it mean that g(n) is an estimate for f(n)? 
 

You could insist that f(n) ≤ g(n) for all n, but that’s asking for too much.  In that case, to 
estimate 2n2 − n + 3 you’d need to use a function like 2n2 + 3, and that function is still too 
complicated.  And it isn’t necessary for f(n) to be at most g(n) for all n because you only care 
about what happens when n gets big; any algorithm will run quickly if n is small. 

 
Suppose you insist instead that f(n) ≤ g(n) for all big enough n.  To express that idea 

mathematically, you say that there must exist some positive real number k, called a threshold, 
such that if n ≥ k, then f(n) ≤ g(n).  In that case, to estimate 2n2 − n + 3 you could use a function 
like 5n2.  If n ≥ 1 (the threshold), then n2 ≥ n ≥ 1, so that 2n2 − n + 3 ≥ 2n2 − 0+ 3n2 = 5n2.  
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But even 5n2 is unnecessarily complicated.  The function 10n log2 n + 8 has bigger coefficients 
than 5, but it’s smaller than 5n2 for big enough n.  In general, multiplying a function by a 
constant is less important when n gets big than changing the function to one that grows at a 
different rate; so for the sake of simplicity we ignore constant multipliers. 

 
To this end, instead of insisting that f(n) ≤ g(n) for all n big enough, we will be satisfied if 

there is some positive real number c, the factor, such that if n is big enough, then f(n) ≤ cg(n).  
Returning to our function 2n2 − n + 3, we have shown that if n ≥ 1, then 2n2 − n + 3 ≤ 5n2; so 
for the factor c = 5 and the threshold k = 1, for all n ≥ k, 2n2 − n + 3 ≤ cn2.  The function n2 is 
simple enough and it gives enough information to be able to estimate the growth rate of 
2n2 − n + 3. 

 
Formalizing the definition of estimate implied by that example, we say that g(n) is an 

estimate of f(n) if there exist two positive real numbers k (the threshold) and c (the factor) such 
that for all n ≥ k, f(n) ≤ cg(n).  We denote the proposition that g(n) is an estimate of f(n) by 
writing f (n) ∈O g(n)( ) .  In mathematical terminology, then, 

 
f (n) ∈O g(n)( ) ⇔ (∃k > 0)(∃c > 0)(∀n ≥ k) f (n) ≤ cg(n)( ) . 

 
 Some of you may have seen a definition of O that uses absolute values.  Why did I use a 
definition that doesn’t use absolute values?  Recall that f(n) represents the number of operations 
an algorithm will do on an input of size n, and algorithms don’t usually do zero operations or 
fewer.  In order for a positive f(n) to be at most cg(n) for large n and positive c, g(n) has to be 
positive for large n.  With these restrictions, we can dispense with absolute values in the 
definition of O. 
 
 Is n3 an estimate for 2n2 − n + 3?  Well, we have already shown that for all n ≥ 1, 
2n2 − n + 3 ≤ 5 n2.  If n ≥ 1, then n3 ≥ n2; so 2n2 − n + 3 ≤ 5 n3.  This means that n3 is also an 
estimate for 2n2 − n + 3.  But is it a good estimate?  Recall that when n = 1000, 2n2 − n + 3 = 
1,999,003, and an Apple 2e will sort a size-1000 array in about half an hour using algorithm S.  
When n = 1000, n3 = 1,000,000,000, and if algorithm S did 1,000,000,000 operations to sort a 
size-1000 array, then your Apple would take about ten days to do it!  If you discovered algorithm 
S and submitted an article saying that its running time is in O(n3), then the referee of your article 
would conclude that S stands for "slow" and reject the article after first showing it to all his 
colleagues so that they could laugh at you.  Evidently, n3 is a bad estimate for 2n2 − n + 3. 
 
 On the other hand, for large n, 2n2 − n + 3 is about twice as big as n2 (for n = 1000, 
2n2 − n + 3 = 1,999,003 and n2 = 1,000,000), so that algorithm S takes only about twice as long 
to run as it would if its real running time were n2 operations.  If you said that the running time 
was in O( n2), then the referee would be prepared to excuse you for underestimating the running 
time by a constant factor.  Intuitively, then, n2 is a good estimate for 2n2 − n + 3. 
 
 Given that g(n) is an estimate for f(n), what sort of mathematical definition could we give 
for g(n) to be a good estimate or a bad estimate for f(n)?  One possibility would be to define g(n) 
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to be a good estimate for f(n) if f(n) is also an estimate for g(n) and a bad estimate otherwise.  
Does this definition make n3 a bad estimate for 2n2 − n + 3 and n2 a good estimate? 
 
 For n3 to be a bad estimate for 2n2 − n + 3 under this definition, for any threshold k > 0 
and any factor c > 0, there would have to exist an n ≥ k such that n3 > c( 2n2 − n + 3).  If n ≥ 3, 
2n2 − n + 3 ≤ 2n2.  If in addition n > 2c, then n3 > 2c n2 ≥ c( 2n2 − n + 3).  Given any k > 0 and 
c > 0, let n = max(3,k,2c+1).  Then n ≥ k, and since n ≥ 3 and n > 2c, n3 > c( 2n2 − n + 3); so 
under this definition, n3 is indeed a bad estimate for 2n2 − n + 3. 
 
 For n2 to be a good estimate for 2n2 − n + 3 under this definition, there must be a 
threshold k > 0 and a factor c > 0 such that for any n ≥ k, n2 ≤ c( 2n2 − n + 3).  If n ≥ 1, n2 ≥ n so 
that 2n2 − n + 3 ≥ 2n2 − n2 + 3 = n2 + 3 ≥ n2, so that with threshold k = 1 and factor c = 1, the 
definition is satisfied and n2 is indeed a good estimate for 2n2 − n + 3. 
 
 Having found a good estimate ( n2) for 2n2 − n + 3, the number of operations needed by 
algorithm S to sort a size-n array, let’s try to find one for 10n log2 n + 8n + 2 , the number of 
operations needed by algorithm M.  If n ≥ 2, log2 n  ≥ 1, so that n log2 n  ≥ n ≥ 1.  Therefore, 
10n log2 n + 8n + 2 ≤ 10n log2 n + 8n log2 n + 2n log2 n = 20n log2 n , so that with threshold k = 2 
and factor c = 20, n log2 n  is an estimate for 10n log2 n + 8n + 2.  Is it a good estimate?  Well, if 
n ≥ 1, log2 n  ≥ 0, so that n log2 n  ≤ 10 n log2 n  ≤ 10n log2 n + 8n + 2 , and the definition of 
estimate is satisfied with threshold k = 1 and factor c = 1. 
 
 Now that we have found good estimates for the running times our our two sorting 
algorithms ( n2 for algorithm S and n log2 n  for algorithm M), how can we use this information 
to help us decide which algorithm will run faster for big n?  We recall that in Chapter 4 we 
proved by induction that 2n ≥ n for every integer n ≥ 0.  Taking logarithms to base 2, we find that 
n ≥ log2 n  for every integer n ≥ 1, so that log2 n ∈O(n) , meaning that algorithm M is at least as 
rapid as algorithm S for big enough n to within some constant factor.  But by our unfortunate 
experiment we have found that for big n, algorithm M is considerably more efficient than 
algorithm S.  How could we have predicted this by using our estimates for the running times of 
those two algorithms?  By substituting some big value of n, of course, but since any n we choose 
may not be big enough, we would have to prove that n ∉O(log2 n) .   Most elementary textbooks 
do not prove this proposition because it is difficult to do directly from the definition of O. 
 
 In the next chapter I will present two algorithms for solving the same problem, one whose 
running time has a good estimate of n  and the other whose running time has a good estimate of 
log2 n .  To choose between these two algorithms, we would have to know that log2 n ∈O( n ) 
and that n ∉O(log2 n) .  In the next section I will prove a general theorem that says that for any 
real c > 0 and b > 1, nc is a bad estimate for logb n  and bn is a bad estimate for nc so that, in 
particular, the algorithm that runs in log2 n  time is the one to choose.  I did prove that theorem 
directly from the definitions of good and bad estimate, but the proof occupies several pages and 
I’ve never met another professor, let alone a student, who would have the patience to do so.  
Using the idea of limits from calculus, that theorem can be proved in a few lines and the sort of 
results we obtained in this section can be derived without the guesswork we had to use here. 
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5.2 Finding and comparing good estimates using limits 
 
 You may have noticed that although the growth rate of a function appears in the title and 
in a couple of places in Section 5.1, I haven't yet defined it.  To do so, I have to use the concept 
of limit from calculus.  We say that f(n) tends to the number c as n tends to infinity if for every 
positive error-tolerance ε , there is a positive threshold k such that for all n ≥ k, f(n) differs from c 
by at most ε .  And we say that f(n) tends to infinity as n tends to infinity if for every positive 
lower bound b there is a threshold k such that for all n ≥ k, f(n) ≥ b.  In mathematical notation: 
 

lim
n→∞

f (n) = c ⇔ (∀e > 0)(∃k > 0)(∀n ≥ k)(| f (n) − c |≤ ε ); 
 

lim
n→∞

f (n) = ∞⇔ (∀b > 0)(∃k > 0)(∀n ≥ k)( f (n) ≥ b). 
  
 I implicitly used this idea to show that for every real number b >1 the function f(x) = bx is 
surjective on the set of positive real numbers.  As x tends to infinity, bx tends to infinity, and as x 
tends to minus infinity, bx tends to zero.  That is why for every real number y > 0 there is an x 
small enough that bx < y and another x large enough that bx > y, so that there must be a third x 
between the other two such that bx = y. 
 

We now have the tools to compare the growth rates of functions.  We say that f(n) grows 
faster than g(n) if f(n)/g(n) tends to infinity as n tends to infinity.  We say that f(n) grows slower 
than g(n) if f(n)/g(n) tends to zero as n tends to infinity.  Recalling that f(n) and g(n) are both 
positive for big enough n, we say that f(n) and g(n) grow at the same rate if f(n)/g(n) tends to 
some positive constant as n tends to infinity.  For example, since lim

n→∞
(n3 /n2) = lim

n→∞
(n) = ∞, n3 

grows faster than n2.  And since lim
n→∞

(n2 /n3) = lim
n→∞

(1/n) = 0, n2 grows slower than n3.  And 

since 
 lim
n→∞

(2n2 − n + 3)/n2( ) = lim
n→∞

(2n2 /n2)− lim
n→∞

(n /n2)+ lim
n→∞

(3/n2) = 2− 0+ 0 = 2, 

2n2 − n + 3 grows at the same rate as n2.   
 
You may have noticed that we have already used these functions of n in the previous 

section.  You may also have noticed that n2, which grows at the same rate as 2n2 − n + 3, is a 
good estimate for 2n2 − n + 3, and that n3, which grows faster than n2 and therefore faster than 
2n2 − n + 3, is a bad estimate for 2n2 − n + 3.  The following theorem generalizes these 
observations and shows how limits can be used to deduce facts about estimates. 
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            Theorem.  Let f(n) and g(n) be two functions from the set of natural numbers (or from the 
set of non-negative real numbers) to the set of real numbers that are positive for large n. 

a) If f(n) and g(n) grow at the same rate, then g(n) is a good estimate for f(n). 
b) If f(n) grows slower than g(n), then g(n) is a bad estimate for f(n). 
c) If f(n) grows faster than g(n), then g(n) is not an estimate for f(n). 

 
Proof.  Since g(n) is positive for large n, we can assume that the threshold k used in the 

definition of O is big enough that g(n) > 0 for all n ≥ k and we can divide by g(n) without fear of 
dividing by zero.  Then g(n) is an estimate for f(n) means that there is a threshold k such that 
f(n)/g(n) is bounded above by some positive constant c for all n ≥ k (see the diagram below). 

 
  
 
 
 
 
 
        f(n)/g(n)=c+ε  
         f(n)/g(n)=c 
         f(n)/g(n)=c-ε  
 
           f(n)/g(n)=0 
 
 
          
                            n=0                         n=k 
 
            If f(n) and g(n) grow at the same rate, then g(n) is an estimate for f(n). 
 
 Suppose that f(n) and g(n) grow at the same rate.  Then for any error-tolerance ε  > 0 there 
is a threshold k such that f(n)/g(n) is bounded between c + ε  and c - ε  for some positive constant 
c for all n ≥ k (see the diagram above).  Pick any ε  > 0; then there is a threshold k such that 
f(n)/g(n) is bounded above by c + ε  for all n ≥ k, so that g(n) is an estimate for f(n). 
 
 How do we know that g(n) is a good estimate for f(n)?  Well, since f(n)/g(n) tends to c, a 
positive constant, g(n)/f(n) tends to 1/c, another positive constant; so f(n) is an estimate for g(n), 
which means that g(n) is a good estimate for f(n). 
 
 Now suppose that f(n) grows slower than g(n).  Then for any error-tolerance ε  > 0 there is 
a threshold k such that f(n)/g(n) is bounded between +ε  and -ε  for all n ≥ k.  But since we are 
assuming that f(n) and g(n) are positive for big n, f(n)/g(n) is bounded between ε  and 0 (see the 
diagram below).  Pick any ε  > 0; then there is a threshold k such that f(n)/g(n) is bounded above 
by e for all n ≥ k, so that g(n) is an estimate for f(n). 
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      f(n)/g(n)=e 
 
     f(n)/g(n)=0 
 
 
 
 n=0                           n=k 
 
         If f(n) grows slower than g(n), then g(n) is an estimate for f(n). 
 
 How do we know that g(n) is a bad estimate for f(n)?  Well, since f(n)/g(n) tends to zero, 
g(n)/f(n) tends to infinity.  This means that for any lower bound b, there is a threshold k such that 
g(n)/f(n) ≥ b for all n ≥ k (see diagram below).  For f(n) to be an estimate for g(n), g(n)/f(n) would 
have to be bounded above by some positive number c for big n, but instead g(n)/f(n) is bounded 
below by any lower bound b you want to choose; so all you have to do is choose some b > c and 
g(n)/f(n) will be bigger than c instead of less than or equal to c for big n.  This means that f(n) is 
not an estimate for g(n), so that g(n) is a bad estimate for f(n). 
 
 
 
 
  g(n)/f(n)=b 
  g(n)/f(n)=c 
 
 
 
 
 
  g(n)/f(n)=0 
 
 
  n=0                            n=k 
 
                          If f(n) grows slower than g(n), then f(n) is not an estimate for f(n). 
 
 Finally, if f(n) grows faster than g(n), then g(n) grows slower than f(n), so that g(n) is not 
an estimate for f(n) (but f(n) is an estimate for g(n) – a bad one).  QED. 
 
 
 We are now in a position to prove the theorem promised in the previous section. 
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 Theorem.  For any real c > 0 and b > 1, nc is a bad estimate for logb n  and bn is a bad 
estimate for nc. 
 
 Proof.  According to the previous theorem, all we have to prove is that nc grows faster 
than logb n  but slower than bn.  To do so, we use l’Hospital’s rule, not the one that says that if 
you enter a hospital you will probably get sick, but the one that says that f(n)/g(n) tends to the 
same limit as f '(n)/g'(n) (the apostrophe means you take the derivative).  The derivative of nc is 
cnc−1 and the derivative of logb n= ln n / ln b  is 1/(n ln b) (ln(n) means loge(n)); so nc/ logb n  
tends to the same limit as cnc−1/(1/(n ln b)) = (c ln b)nc , which is infinity because c > 0.  This 
proves that nc grows faster than logb n ; now we will prove that nc grows slower than bn.  The 
derivative of bn = en ln b  is (ln b)en ln b  = (ln b)bn; so nc/ bn tends to the same limit as 
cnc−1/(ln b)bn.  The first application of l’Hospital’s rule diminishes the exponent of n by 1 and 
multiplies the fraction by a constant but leaves all n factors b.  Applying this rule at least c times 
will make the exponent of n zero or less and multiply the fraction by a constant and there still 
will be all n factors b.  Since b > 1, the fraction will tend to 0.  This proves that nc grows slower 
than bn.  End of proof! 
 
 If you really want to crack your teeth, try proving this theorem directly from the definition 
of O without using any results that need limits to derive. 
 
 Now suppose we have some complicated function f(n) and we want to find a simpler 
function g(n) that is a good estimate for f(n).  We use the above two theorems together with the 
following two theorems. 
 
 Theorem.  If f1(n) grows at least as fast as f2(n), then f1(n) and f1(n)+ f2(n) grow at 
the same rate. 
 
 Proof.  Always assuming that all the functions are positive for big n so that we can divide 
by them, ( f1(n)+ f2(n))/ f1(n) = 1 + f2(n)/ f1(n).  Since f2(n)/ f1(n) tends to a non-negative 
constant c, (a positive constant if f1(n) grows at the same rate as f2(n) or 0 if f1(n) grows faster 
than f2(n)), ( f1(n)+ f2(n))/ f1(n) tends to the positive constant c+1, and the result follows from 
the first theorem of this section, QED. 
 
 This theorem can be easily extended to the sum of any number of functions, as long as 
this number is independent of n.  This implies that to get a good estimate for the sum of several 
functions, just take the function (or functions) that grow the fastest and find a simple function 
g(n) that grows at the same rate; then g(n) will serve as a good estimate for the whole sum.  For 
example, take any polynomial with positive coeffients: amnm+ ...+ a0.  The term that grows the 
fastest is amnm and it grows as the same rate as nm; so nm is a good estimate for the polynomial.  
We can relax the restriction that all the coefficients be positive because the terms with zero or 
negative coefficients will be zero or negative for all x > 0.  It suffices that am be positive.  A 
special case is the polynomial 2n2 − n + 3, for which we found the good estimate n2 in section 
5.1 by guessing a threshold and a factor. 
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 In general, though, you have to be careful about subtraction.  You have to make sure that 
the fastest growing terms don’t cancel each other out or leave a function that is negative for big n.  
For example, take the function f(n) = (n +1)2 − n2.  Since n grows faster than 1, it would be 
tempting to simplify n + 1 to n, which would then simplify f(n) to 0, but 0 is not an estimate for 
f(n).  Since there is a subtraction, you have to expand (n +1)2 to see what happens to the fastest 
growing terms.  In this way we find that f(n) = (n2 + 2n +1)− n2 = 2n + 1.  The fastest growing 
terms do cancel each other out, and of the remaining terms, 2n grows faster than 1; so n is a good 
estimate for f(n). 
 
 Did you ever hear the story about the little tailor who killed seven flies and boasted that 
he was the strongest creature on Earth?  His claim was contested by two giants.  He certainly 
wasn’t stronger than they were, but he was smarter.  He hid from them until they fell asleep, and 
then he pocketed some stones and climbed a tree directly above them.  Then he threw a stone at 
each of the giants, waking them both up.  Each giant thought that the other one had thrown a 
stone at him; so they fought until they were both dead.  The tailor claimed credit for having killed 
the giants, making him indeed the strongest creature on Earth. 
 
 I read once that children will accept any joke during a lesson, however irrelevant the joke 
is to the material being taught in the lesson, whereas adult students insist that jokes be relevant.  
So what is the relevance of that story?  Well, the two copies of n2, the fastest growing terms, are 
the two giants that annihilate each other, while, of the remaining terms, 2n, which grows faster 
than 1, is the little tailor and 1 is the 7 flies he killed, making him the champion worthy of 
imposing his good estimate n on the entire function! 
 
 Some elementary textbooks present the following analogue of the above theorem: if g1(n) 
is an estimate for f1(n) and g2(n)  is an estimate for f2(n), then max( g1(n) , g2(n)) is an estimate 
for  f1(n)+ f2(n).  This is true, but it says nothing about good estimates.  Besides, it has another 
disadvantage, as the following example will illustrate.  Suppose you want to find an estimate for 
n2 + 2n.  To use this version of the theorem, you have to find max( n2, 2n).  When n = 5, 
max( n2, 2n) = 2n because 25 = 32 whereas 52 = 25, but when n = 3, max( n2, 2n) = n2 because 
32 = 9 whereas 23 = 8.  Neither n2 nor 2n is equal to max( n2, 2n) for all n; so you’d need to use 
max( n2, 2n) itself as an estimate, but that is hardly a simple function!  Of course, for estimates all 
you care about is which one is bigger for big enough n.  If you redefine max( g1(n), g2(n)) to be 
the one that is bigger for all big enough n, assuming that one of them is, then you can choose 2n 
as the estimate – as soon as you have proved that 2n ≥ n2 for all n ≥ 4.  How to do so?  By 
induction - try it!  Of course, if you know that 2n grows faster than n2 (a special case of a result 
we already proved), you can conclude that 2n ≥ n2 for all big enough n, so that 2n is a estimate 
for n2 + 2n.  But once you know that 2n grows faster than n2, you can already conclude that 2n 
is a good estimate for n2 + 2n using the results of this section! 
 
 Having treated sums and differences of functions, let’s try our hand at products and 
quotients.  Some elementary textbooks prove that if g1(n) is an estimate for f1(n) and g2(n)  is 
an estimate for f2(n), then g1(n) g2(n)  is an estimate for f1(n) f2(n).  This too is true, but it 
says nothing about either good estimates or quotients.  The following theorem lets you get good 
estimates for the product and the quotient of two functions. 
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 Theorem.  Suppose that f1(n) grows at the same rate as g1(n)  and f2(n) grows at the 
same rate as g2(n).  Then f1(n) f2(n) grows at the same rate as g1(n) g2(n)  and f1(n)/ f2(n) 
grows at the same rate as g1(n)/ g2(n) . 
 
 Proof.  ( f1(n) f2(n))/( g1(n) g2(n)) = ( f1(n)/ g1(n))( f2(n)/ g2(n)).  Since f1(n)/ g1(n) 
tends to a positive constant c1 and f2(n)/ g2(n) tends to a positive constant c2, 
( f1(n)/ g1(n))( f2(n)/ g2(n)) will tend to the positive constant c1 c2, so that f1(n) f2(n) grows at 
the same rate as g1(n) g2(n) . 
 
 Similarly ( f1(n)/ f2(n))/( g1(n)/ g2(n)) = ( f1(n)/ g1(n))/( f2(n)/ g2(n)), which tends to the 
positive constant c1/ c2, so that f1(n)/ f2(n) grows at the same rate as g1(n)/ g2(n) .  QED. 
 
 Now let’s use all these theorems to find a good estimate for a sadistically complicated 

function.  Let f (n) =
nn + n2 × 2n × log2 n − n(nn−1 − n4 )( )

2n5 + 3n4(log2 n)17( )
.  Seeing that there is a subtraction in 

the numerator, we multiply nn−1 − n4  by n so that the numerator is equal to 
nn + n2 × 2n × log2 n − nn + n5.  The fastest growing terms nn cancel each other out, leaving 
n2 × 2n × log2 n + n5.  Of these two remaining terms, the first one contains an exponential and the 
second one only a power; so the first one grows faster than the second one and the numerator 
grows at the same rate as the first term n2 × 2n × log2 n .  Now, of the two terms in the 
denominator, which one grows faster?  Well, 2n5 / 3n4(log2 n)17  = 2n / 3(log2 n)17  = 

2
3

n1/17
log2 n
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

17
.  Since any positive power of n grows faster than logb n  to any base b > 1, that 

fraction tends to infinity; so 2n5 grows faster than 3n4(log2 n)17  and the denominator grows at 
the same rate as n5.  This means that f(n) grows at the same rate as ( n2 × 2n × log2 n )/ n5 = 
2n × log2 n / n3, which is a good estimate for f(n).  I defy you to derive and prove the same result 
directly from the definition of O! 
 
 Of course, there are functions f(n) to which these theorems do not apply.  For example, let 
f(n) = n if n is odd and 1 if n is even.  The function g(n) = n is a bad estimate for f(n), but you 
can’t use any of the above theorems to prove it because f(n)/g(n) = 1 if n is odd and 1/n if n is 
even, which has no limit.  You need to prove it directly from the definition of O.  The function 
g(n) is an estimate for f(n) because g(n) ≤ f(n) for all n ≥ 1.  And f(n) is not an estimate for g(n) 
because g(n)/f(n) = n for all even n and therefore is not bounded by any constant for big n.  
Furthermore, even though n is a bad estimate for f(n), you can’t find a simple function that is a 
better estimate because f(n) = n for all odd n; so any function that grows slower than n will not be 
an estimate at all!  Some professors like to give you more complicated functions for which no 
good estimate can be found just to force you to use the definition of O instead of theorems that 
depend on the concept of limit, but even I am not that sadistic.  After all, f(n) is supposed to 
represent the number of operations done by an algorithm on an input of size n, and most 
reasonable algorithms do not have such pathological time complexities.  
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CHAPTER 6. ALGORITHMS – COMPLEXITY ANALYSIS AND CORRECTNESS 

PROOF USING A LOOP INVARIANT 
 
 An algorithm is a finite series of instructions to solve a problem.  As a non-mathematical 
example, suppose that the problem you want to solve is to profit from a money-losing factory. 
 
Procedure fraud; 
    insure the factory for megabucks; 
    blow up the factory; 
    hire a shady lawyer; 
end fraud. 
 
 Before programming an algorithm on a computer, you first have to refine it so that each 
instruction can be translated into a line of code.  Here is a refinement of the instruction "blow up 
the factory" into three instructions: 
 
    hire an illiterate worker; 
    give him a job with explosives to be done late in the evening; 
    leave the factory early. 
 
 As a more mathematical example, suppose you are allowed to eat one candy out of a pile 
of candies.  Since they all taste equally good, you will of course choose the biggest one.  You 
could, of course, spread them out on a table and look at them all at once to find the biggest one, 
but a computer can’t do that; it can only compare two numbers.  To model what a computer 
would have to do, you take the topmost candy from the pile.  Then you compare the candy in 
your hand with the topmost one left in the pile.  If the one in your hand is bigger, you throw away 
the topmost one in the pile; otherwise you throw away the one in your hand and take the topmost 
candy from the pile.  Either way, the one in your hand is the bigger of the first two candies you 
examined.  You continue this process until you have examined all the candies.  At each stage, the 
candy in your hand is the biggest one you’ve examined so far, so that once you have examined all 
the candies, the one in your hand is the biggest one of all, and you transfer it to your mouth. 
 
 Here is the algorithm written as a pseudocode, which is a description of an algorithm that 
is not written in any particular computer language but that is sufficiently refined that it can be 
translated line for line into a program. 
 
real function max(n: natural; A: array[1..n] of real); 
                                                    {max(n,A) is the largest of the n≥1 real numbers in the array A.} 
    local variables i: natural; CM: real; 
                                 {CM stands for current maximum – it’s the size of the candy in your hand.} 
    CM←A[1];                 {The value in A[1] gets copied into CM when you take the first candy.} 
    for i←2 to n do                                                    {For i = 2,3,…,n, do whatever is in the loop.} 
           {At this point CM contains the largest among the values A[1],…,A[i-1] examined so far.} 
        if A[i]>CM then CM←A[i] end if; 
                          {Now CM contains the largest among the values A[1],…,A[i] examined so far.} 
    end for;                               {Now CM contains the largest among all the values A[1],…,A[n]} 
    return CM;                   {Transfer the value of CM to the program calling max – your mouth.} 
end max. 
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 To show how this algorithm works, we do a trace of the program as it acts on the size-10 
array (1,4,2,8,5,8,9,3,6,7), showing the value of i, A[i] and CM before the loop is entered and at 
the end of each iteration of the loop.  Note that for each i, CM is equal to the largest among the 
values A[1],…,A[i] examined so far, so that after the last iteration, CM, the value returned, is 
equal to the largest among all the values A[1],…,A[n] and you really do eat the biggest candy. 
 
  i 1 2 3 4 5 6 7 8 9    10=n 
A[i] 1 4 2 8 5 8 9 3 6 7 
CM 1 4 4 8 8 8 9 9 9 9 returned value. 
 
 The trace indicates that the algorithm works, but it doesn’t constitute a proof.  Note first 
that the algorithm will not work if n = 0.  The array A does not have a first element; so the 
instruction CM←A[1] will copy some garbage into the variable CM.  A user-friendly algorithm 
would have a test for whether n = 0 and an instruction to exit and print an error message in that 
case – presumably a message more printable than what you would say if someone offered to let 
you eat the candy of your choice from an empty pile.  The absence of error testing is a common 
source of bugs even in software that gets sold in stores.  I once played a computer game in which 
you could climb either over or under a rope.  I tried to walk through it instead, wondering 
whether the rope would stop me from walking through it or else magically disappear.  Much to 
my chagrin, it did neither of those things; instead, the game crashed.  Apparently the apparent 
thickness of the rope on the screen was calculated by dividing the real thickness by the distance 
from the player to the rope.  By trying to walk through the rope I made the distance zero, and 
since there was no test for division by zero, the game crashed.  Another well-known computer 
error, a disagreement over whether distance should be measured in metric or Imperial units, once 
made a spaceship crash on Mars! 
 
 The algorithm max does not contain a test for n = 0 but it does contain in the first 
comment the condition under which the algorithm will work: n ≥ 1.  This is called a precondition.  
The statement "max(n,A) is the largest of the n ≥ 1 real numbers in the array A" says what the 
algorithm will output if the precondition is satisfied; this statement is called a postcondition.  If 
the postcondition is satisfied whenever the precondition is satisfied, then the algorithm is said to 
be correct. 
 
 How can we prove that the algorithm max is correct?  The algorithm contains a loop, and 
the comment at the beginning of the loop gives a condition that should be satisfied at the 
beginning of each iteration of the loop - CM contains the largest among the values A[1],…,A[i-1].  
Such a statement is called a loop invariant.  We prove that this condition is satisfied at the 
beginning of each iteration of the loop by mathematical induction on the number of iterations of 
the loop. 
 
 Basic step: the first iteration.  At the beginning of the first iteration, i = 2 and CM 
contains the value A[1] because the instruction CM←A[1] put it there (and because the 
precondition n ≥ 1 is satisfied).  Since i - 1 = 1, the set {A[1],…,A[i-1]} consists of the sole value 
A[1], which is trivially the largest value in the set; so the loop invariant is satisfied. 
 
 Induction step.  Suppose that at the beginning of a given iteration, CM contains the 
largest among the values A[1],…,A[i-1] and that the condition for executing the body of the loop 
(i ≤ n) is satisfied as well.  If A[i] > CM, then A[i] is the largest among the values A[1],…,A[i], 
and this value A[i] is copied into CM.  If A[i] ≤ CM, then CM is already the largest among the 
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values A[1],…,A[i], and CM retains this value.  In either case, at the end of this iteration of the 
loop, CM will contain the largest among the values A[1],…,A[i].  Then i gets increased to i + 1 
and the algorithm goes to the beginning of the next iteration of the loop.  For this new, larger 
value of i, CM now contains the largest among the values A[1],…,A[i -1].  To see this, trace the 
execution of the iteration of the loop for which i = 4.  At the beginning of this iteration, CM 
contains 4, the largest of the i – 1 = 3 values A[1] = 1, A[2] = 4 and A[3] = 2.  At the end of this 
iteration, CM contains 8, the largest of the i = 4 values A[1] = 1, A[2] = 4, A[3] = 2 and A[4] = 8.  
At the beginning of the next iteration, i = 5 and CM contains 8, the largest of the i – 1 = 4 values 
A[1] = 1, A[2] = 4, A[3] = 2 and A[4] = 8.  By induction, CM contains the largest among the 
values A[1],…,A[i -1] for every value of i including the one that violates the condition for 
executing the body of the loop. 
 
 But we aren’t finished yet.  We have one more step to do. 
 
 Terminal step.  We have to prove that the algorithm is guaranteed to terminate for every 
n that satisfies the precondition and that when it does terminate, the postcondition will be 
satisfied.  The termination proof is easy: after n - 1 iterations of the loop, i will increase to n + 1 
and the condition for executing the body of the loop will no longer be satisfied.  With i = n + 1 
the loop invariant says that CM contains the largest among the values A[1],…,A[n].  At this point 
the algorithm skips to the statement following the loop and returns the value CM, so that the 
value returned (max(n,A)) will be the largest number in the array – the postcondition.  We have 
proved that if the precondition is satisfied, so is the postcondition.  The algorithm is correct, 
QED. 
 
 The process of proving the correctness of an algorithm containing a loop can be illustrated 
by using dominos, each one representing an iteration of the loop.  In this case there is a last 
domino, because for the algorithm to terminate there must be a last iteration.  As before, the basic 
step is pushing over the first domino and the induction step is each domino except the last one 
knocking over its neighbour to the right.  The terminal step is that there is a last domino and that 
it falls on the cat’s tail, making the poor cat say meow. 
 
  
 
 
 ….. 
  
 
 
 
 The termination proof is an essential component of a correctness proof.  It can be argued 
that an algorithm doesn’t have to terminate because, for example, a spaceship’s computer never 
stops working.  But it keeps on giving answers, whereas an algorithm that goes on forever 
without ever giving any answers isn’t worth very much.  As an example, consider the following 
algorithm for counting down to the launch of a spaceship: while n ≠ 0 do n←n-1; end while.  If 
you enter a negative value for n, the algorithm will continue to count forever and the spaceship 
will never get off the ground! 
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 How many operations does the algorithm max do as a function of n?  There are n - 1 
iterations of the loop.  In each iteration, there is a comparison (if A[i] > CM) and perhaps an 
assignment (CM←A[i]).  In addition there are 2 operations on i, the index of the loop: at the 
beginning of the loop it is compared with n and at the end of the loop it is increased to i + 1.  This 
makes 4(n - 1) operations so far.  As well, there is the initial assignment i←2 and the final 
comparison of i with n when i has increased to n + 1, the assignment CM←A[1] and the transfer 
of CM to the program that calls max, for a total of 4n operations.  The total number of operations 
done by this algorithm is thus in O(n), but we could have figured that out without calculating the 
exact number of operations.  There are n - 1∈O(n) iterations of the loop, each iteration does O(1) 
operations, and outside the loop an additional O(1) operations are done; so the total number of 
operations is in O(n).  Doing the estimation this early is simpler than calculating the exact 
number of operations.  The exact number is not particularly informative because we don’t know 
whether a comparison will take the same amount of time as an assignment; so early estimation 
gave us all the useful information we could get.  In this case the estimate we obtained was good.  
As we shall see later, this is not always the case. 
 
6.1 Searching algorithms 
 
 Suppose you have an array of items of the same type and another item of the same type, 
called the key.  You want to know whether the array contains any items that are identical to the 
key and, if so, you want to find the location of the leftmost occurrence of the key in the array.  
For example, suppose you have the following size-10 array of integers. 
 
  i 1 2 3 4 5 6 7 8 9    10 
A[i] 2 2 2 3 3 3 5 5 5 7 
 
If the key is 3, you want your searching algorithm to return 4.  If the key is 4, you want your 
algorithm to return 0 to indicate that there are no occurrences of the key in the array. 
 
 The simplest searching algorithm, sequential search, is based on two well-known ideas.  
The first one comes from Lewis Carroll’s book Alice in Wonderland: start at the beginning, keep 
going until you get to the end and then stop.  The second is a riddle.  Question: Why is it that you 
always find what you’re looking for in the last place you look for it?  Answer: Because once you 
find it, you stop looking!  In mathematical terms, you start at the beginning of the array and 
examine successively the first item, the second item, the third item and so on until either you find 
the key in the array or else you get to the end of the array without finding the key.  Here is a 
pseudocode of this algorithm. 
 
natural function SequentialSearch(n: natural; A: array[1..n] of some type; key: same type) 
    local variable i: natural; 
    i←1; 
    while i ≤ n {None of the items A[1],…,A[i-1] is equal to the key.} and A[i] ≠ key do 
        i← i + 1; 
    end while; 
    if i ≤ n then {A[i] is the leftmost occurrence of the key} return i; 
    else {there is no occurrence of the key in the array} return 0; end if; 
end Sequential Search. 
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 If the key is 3, then when i = 4, the condition for executing the body of the loop will be 
false; so the algorithm with jump over the loop.  Since i = 4 and n = 10, i ≤ n; so the algorithm 
will return 4, the index of the leftmost occurrence of 3 in the array.  Similarly, if the key is 7, the 
condition for executing the body the loop will be violated when i = 10; so the algorithm will 
return 10.  If the key is 4, then when i = 10, the condition for executing the body of the loop will 
still be satisfied and i will increase to 11.  Now the first condition (i ≤ n) will be false, and since 
the conjunction p∧q is false if p is false, a smart algorithm will jump out of the loop without 
ever testing the second condition (A[i] ≠ key), which couldn’t be tested anyway because A[11] 
isn’t part of the array!  Since i > n, the algorithm will return 0. 
 
 How can we be sure that the algorithm works?  Note that there is no precondition: if n = 0, 
the condition for executing the body of the loop will be false for i = 1; so the algorithm will 
return 0, which is the right answer since the key cannot be found in an empty array.  The loop 
invariant says that for each iteration of the loop, after testing whether i ≤ n but before testing 
whether A[i] ≠ key, none of the items A[1],…,A[i -1] is equal to the key. 
 
 Basic step: the first iteration.  Here i = 1 and the loop invariant says none of the items 
A[1],…,A[0] is equal to the key, which must be true because that part of the array is empty. 
 

Induction step. Suppose that the condition for executing the body of the loop is satisfied 
and that none of the items A[1],…,A[i - 1] is equal to the key.  Since i ≤ n, we can examine A[i], 
and since A[i] ≠ key, none of the items A[1],…,A[i] is equal to the key.  The body of the loop 
changes i to i + 1 so that for this new value of i, none of the items A[1],…,A[i - 1] is equal to the 
key. 
 

Terminal step. After at most n iterations of the loop, either A[i] = key or i = n + 1.  If 
A[i] = key, since none of the items A[1],…,A[i-1] is equal to the key, the leftmost occurrence of 
the key in the array must be A[i], and the algorithm returns its index i, as required.  If i = n + 1, 
the loop invariant says that none of the items A[1],…,A[n] is equal to the key; so there is no 
occurrence of the key in the array and the algorithm returns 0 as required.  The algorithm works, 
QED. 
 
 How many operations does it do as a function of n?  Well, if you’re lucky, you’ll find the 
key in the first place you look, and then the algorithm will do O(1) operations.  If you’re unlucky, 
you’ll find it in the last place you could have looked – A[n] – or, if you’re really unlucky, you 
won’t find it at all.  In the latter case the algorithm will do all n iterations of the loop and O(n) is 
a good estimate for the number of operations the algorithm will have to do.  This is its worst-case 
time complexity – the greatest number of operations an algorithm will do as a function of n. 
 
 How many operations will the algorithm do in the average case?  To answer that question, 
we have to make certain assumptions about the probability of each event occurring.  If there is at 
least one occurrence of the key in the array and if the first occurrence is equally likely to be in 
any position in the array, then the average number of iterations of the loop will be n/2, so that 
O(n) is still a good estimate.  In general, average-case estimates are much harder to make than 
worst-case estimates and are usually omitted from elementary courses.  Besides, an average-case 
estimate gives you no guarantee about how long the algorithm will take for a given instance of 
the problem.  For example, suppose you are searching among the n keys on your key ring for the 
one that opens your front door.  If they all look alike, you will use sequential search, trying all 
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your keys one after another until one of them opens your door, and since your key is sure to be on 
your key ring, you will find it after at most n tries.  On the average, you will find it after about n/2 
tries.  This average-case estimate is satisfactory under ordinary conditions.  But suppose that 
you’re being chased by a young man with a knife.  It isn’t enough to know that in the average 
case you will have enough time to open your door, enter, close the door and lock it before he 
reaches it.  You need to have a guarantee that you can escape even in the worst case – that the 
key that opens your door is the last one you try – otherwise you will keep on running.  With 
computer programs the price of underestimating the worst-case time taken by a program to 
execute an algorithm isn’t quite that dramatic, but there are circumstances under which it could 
be frustrating.  In the prehistoric days when they still used punch cards, some computer rooms 
contained a special compiler for debugging programs.  You stood in line, and when it was your 
turn, you put your stack of cards in a reader.  After 2 seconds of CPU time, the computer would 
stop executing your program and start executing the program of the person behind you in the line.  
If you wanted to test your program with biggest data that the computer could execute within 2 
seconds, then you would need to know the maximum time, not the average time, that the 
computer would take as a function of the data size. 
 
 The time taken to solve a problem depends upon the size of the data, but also on the 
algorithm you use to solve the problem.  For example, you wouldn’t look up a word in a 
dictionary or a name in a telephone directory using sequential search because it would take you 
an unreasonably long time.  Fortunately you don’t have to use sequential search because the 
words in a dictonary and the names in a telephone directory are sorted in alphabetical order and 
there is a faster algorithm for searching for a key in a sorted list.  In a dictionary or a directory 
you make an assumption about the approximate location of a word or name based on the first 
letter.  In a general sorted array, no such assumption can be made.  For example, if you compared 
a number with the average of all the numbers in a sorted array, you would assume that 9 is near 
the beginning of the array (1,2,3,4,5,6,7,8,9,100) because the average number is 14.5 which is 
bigger than 9.  With no knowledge of the array except that it is sorted, your best bet is to play it 
safe: you choose the strategy that minimizes the maximum number of comparisons that bad luck 
could force you to make.  You compare the key (9) with the number in the middle of the array 
(5).  Since 9 > 5, you know that 9 can’t be to the left of 5 in the array; so, if it is in the array, it 
must be to the right of 5 – that is, in the sub-array (6,7,8,9,100).  Again, you compare 9 with the 
number in the middle of the array (8), and since 9 > 8, if it is in the array it must be in the sub-
array to the right of 8; that is, (9,100).  Now this array has no middle, or rather, it has two near-
middles: 9 and 100.  If you compare the key with 9, you’ve lucked out and found the key in the 
third comparison.  If you compare the key with 100, since 9 < 100 you know that 9 is to the left 
of 100; so if it’s in the array it must be in the subarray to the left of 100, which is (9).  A fourth 
comparison verifies that the remaining array element is indeed the key. 
 
 Suppose you are searching for the leftmost occurrence of a key in a sorted array.  If the 
array is (2,2,2,3,3,3,5,5,5,7) and the key is 3, comparing the key with the middle element of the 
array, which is a 3 but not the leftmost 3, for equality won’t help you.  The following version of 
the algorithm suggested by the above example finds the leftmost occurrence of a key in a sorted 
array or determines that there are no occurrences of the key in the array.  It has the added 
advantage that you compare the key with an element of the array only once and not twice, once 
for equality and once to decide if the key is bigger or smaller than the array element. 
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natural function BinarySearch(n: natural; A: array[1..n] of an ordered type; key: same type); 

{BinarySearch(n,A,key) is the index of the leftmost occurrence of the key in the array A 
  of size n ≥ 1, sorted in increasing order, or 0 if there are no occurrences of the key in the array.} 
    local variables: s,m,b: natural; {s,m,b are the indices of the leftmost, middle and rightmost 
                                                     element of the sub-array in which you are searching for the key} 
    s←1; b←n;                                             {In the beginning you are searching the whole array.} 
    while b > s do                                                    {while this sub-array has more than 1 element} 
           {Loop invariant: if the key is in the array, its leftmost occurrence is among A[s],…,A[b].} 
        m← (s+b) div 2;         {the average of s and b rounded down if s + b is odd} 
        if key > A[m] then                {A[s] ≤ … ≤ A[m] < key; so the key can’t be in that part of A} 
            s←m + 1;                                                       {Search in the subarray (A[m+1],…,A[b]).} 
        else                                                                                                   {key ≤ A[m] ≤ … ≤ A[b]; 
                                               so the leftmost occurrence of the key can’t be to the right of A[m]} 
            b←m;                                                                   {Search in the subarray (A[s],…,A[m]).} 
        end if; 
    end while;                                             {Now b = s; so if there is an occurrence of the key in A, 
                                                                                              its leftmost occurrence must be A[s].} 
    if key = A[s] then 
        return s; 
    else 
        return 0; 
    end if; 
end BinarySearch. 
 

We trace this algorithm twice with the size-10 array that we used for sequential search: 
 
  i 1 2 3 4 5 6 7 8 9    10 
A[i] 2 2 2 3 3 3 5 5 5 7 
 
 Suppose that key = 3. 
s  b  m A[m] 
1 10  5  3  Since 3 = key ≤ A[5] = 3, the leftmost occurrence isn’t to the right of A[5]. 
1  5  3  2  Since 3 = key > A[3] = 2, the leftmost occurrence isn’t A[3] or to its left. 
4  5  4  3  Since 3 = key ≤ A[4] = 3, the leftmost occurrence isn’t to the right of A[4]. 
4  4        The only possibility is A[4], and since key = A[4] = 3, return 4. 
 
 Suppose that key = 4. 
s  b  m A[m] 
1 10  5  3  Since 4 = key > A[5] = 3, the leftmost occurrence isn’t A[5] or to its left. 
6 10  8  5  Since 4 = key ≤ A[8] = 5, the leftmost occurrence isn’t to the right of A[8]. 
6  8  7  5  Since 4 = key ≤ A[7] = 5, the leftmost occurrence isn’t to the right of A[7]. 
6  7  6  3  Since 4 = key > A[6] = 3, the leftmost occurrence isn’t A[6] or to its left. 
7  7        The only possiblity is A[7], and since 4 = key ≠ A[7] = 5, return 0. 
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 The precondition for this algorithm to work is that A is an array of size n ≥ 1 sorted in 
increasing order.  The postcondition is that the value returned is the index of the leftmost 
occurrence of the key in A if there are any occurrences or 0 otherwise.  The loop invariant is that 
if there are any occurrences of the key in A, then the leftmost occurrence must be in the sub-array 
A[s..b] = (A[s],…,A[b]). 
 
 Basic step.  At the beginning of the first iteration of the loop, s = 1 and b = n; so the loop 
invariant says that if there are any occurrences of the key in A, then the leftmost occurrence must 
be in the entire array, which is trivially true. 
 
 Induction step.  Suppose that at the beginning of some iteration of the loop, if there are 
any occurrences of the key in A, then the leftmost occurrence must be between A[s] and A[b] 
inclusive, and that b > s so that the body of the loop will be executed.  There are two cases to 
consider.  Suppose that key > A[m].  Then all the elements to the left of A[m] will be less than the 
key; so the leftmost occurrence can’t A[m] or to its left.  If there are any occurrences of the key in 
A, then its leftmost occurrence must be between A[m+1] and A[b].  When s is set to m+1, for the 
new values of s and b, the loop invariant is now true at the beginning of the next iteration.  
Suppose that key ≤ A[m].  Then all the elements to the right of A[m] will be at least as big as the 
key.  If key < A[m], then neither A[m] nor any of the elements to its right can be equal to the key.  
If key = A[m], then the leftmost occurrence of the key could be A[m] but can’t be to its right.  In 
either case, the leftmost occurrence of the key can’t be to the right of A[m]; so if there are any 
occurrences, the leftmost one must be between A[s] and A[m].  When b is set to m, for the new 
values of s and b, the loop invariant is now true at the beginning of the next iteration. 
 
 Terminal step. We first prove that at every iteration, either s goes up or b goes down.  
Now m is at most (s+b)/2, which is strictly less than b if s < b; so if b is set to m, it goes down.  
And m is at least s; so if s is set to m + 1, it goes up.  In either case, the integer b - s will fall by at 
least 1 without ever becoming negative, so that after a finite number of iterations it falls to 0.  
Now s = b, so that the algorithm exits the loop, and the loop invariant says that if there are any 
occurrences of the key in A, then the leftmost one must be in the size-1 subarray that consists of 
A[s].  If key = A[s], this must be the leftmost occurrence and the algorithm returns s.  Otherwise, 
there are no occurrences of the key in A and the algorithm returns 0.  The algorithm works, QED. 
 
 From the above example, we see that the number of iterations of the loop can be different 
for the same value of n: when they key was 3 there were 3 iterations and when the key was 4 
there were 4 iterations.  What is the greatest number of times that this algorithm will execute the 
loop as a function of n? 
 
 From the above example, we saw that when the sub-array to be searched was A[1..10], of 
even size 10, we either searched the size-5 subarray A[1..5] or the size-5 subarray A[6..10].  The 
sub-array to be searched was divided into two sub-arrays of exactly the same size.  But when the 
sub-array to be searched was A[1..5] or A[6..10] of odd size 5, it got divided into two sub-arrays 
of sizes 2 and 3.  When the key was 3 we got lucky and got to search the size-2 sub-array A[4..5], 
but when the key was 4 we got unlucky and had to search the size-3 sub-array A[6..8] and then 
our bad luck continued and we had to search the size-2 sub-array A[6..7]. 
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 It appears that a size-n sub-array always gets divided into sub-arrays of sizes n / 2⎣ ⎦ and 
n / 2⎡ ⎤, so that in the worst case the size of the sub-array to be searched will systematically go 

from n to n / 2⎡ ⎤.  The size of the sub-array A[s..b] is equal to b – s + 1.  Initially, when s = 1 and 
b = n, the size is n – n + 1 = n, not surprisingly.  The algorithm quits the loop when b = s so that 
the size of the sub-array to be searched is equal to s – s + 1 = 1.  If b > s, then either b gets set to 
m or else s gets set to m + 1, so that the size changes from b – s + 1 to either m – s + 1 or b - m.  
Now m is (b + s)/ 2⎣ ⎦.  The table below gives the various possibilities. 
 
Parity of b+s    even                  odd 
Value of m    (b+s)/2    (b+s-1)/2 
Left size m-s+1        (b-s)/2 + 1 = (b − s+1)/ 2⎡ ⎤   (b-s+1)/2 
Right size b-m      (b-s)/2 = (b − s+1)/ 2⎣ ⎦   (b-s+1)/2 
 
Whether n is even or odd, a size-n array will be divided into 2 sub-arrays of size n / 2⎣ ⎦ and 
n / 2⎡ ⎤, and if our luck is systematically bad, as it must be assumed to be in a worst-case analysis, 

it will always be the sub-array of size n / 2⎡ ⎤ that will be searched next. 
 
 This is an example of a divide-and-conquer algorithm.  You divide the current sub-array 
array into two sub-arrays, and then the luck of the draw chooses which one you have to search 
next.  In a worst-case analysis you pretend that the luck of the draw is an intelligent opponent 
who will always leave you with the biggest possible sub-array to search in order to maximize the 
number of comparisons you will have to make.  To minimize the number of comparisons your 
nasty opponent can force on you, you divide the current sub-array into two sub-arrays of sizes as 
nearly equal as possible, which is what the algorithm BinarySearch does. 
 
 An algorithm of this type can be illustrated by the following model.  Instead of a size-n 
array, suppose that your mother gives you a plate of n beans that you find totally disgusting, 
insists that you eat them all, and leaves the room.  You have a dog that will eat one bean before 
discovering how disgusting it is.  And you have a little brother, who offers you a deal: you divide 
the pile of beans into two piles without cutting any bean in two, and for one dollar, he will choose 
one of the piles and eat all the beans in the pile.  Your problem is to reduce the pile of beans to a 
single bean, to be given to your dog, while paying your brother as little as possible.  Assuming 
that he is intelligent enough to leave you with the bigger pile each time, your best strategy is to 
divide the pile into two sub-piles of sizes as nearly equal as possible.  In that case, one dollar will 
reduce the size of a pile from n to n / 2⎡ ⎤.  How much money will you have to pay him to reduce a 
pile of n beans to a single bean? 
 

In mathematical terms, how many times do you have to divide n by 2, rounding up each 
time, to reduce it to 1?  If n = 8, it takes 3 divisions – 8,4,2,1.  If n = 16, it takes 4 divisions – 
16, 8, 4, 2, 1.  In general, if n = 2k, then it will take k divisions, so that if n is a power of 2, then it 
takes log2 n  divisions.  Now suppose that n is not necessarily a power of 2.  For example, 
suppose that n = 9.  It will now take 4 divisions – 9, 5, 3, 2, 1.  Since log2 9 is between 3 and 4 
and the number of divisions is 4, which is equal to log2 9⎡ ⎤ , it is reasonable to assume that in 
general the number of divisions necessary for a given n is log2 n⎡ ⎤ . 

 
To prove that assumption, we use generalized induction on n. 
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Basic step: n = 1 and n = 2.  Now log21 = 0 and it takes 0 divisions to reduce 1 to 1.  And 

log2 2 = 1 and it takes 1 division to reduce 2 to 1. 
 
Induction step.  To simplify the notation, we note that k = log2 n⎡ ⎤  if and only if 

2k−1 < n ≤ 2k.  We assume that n > 2 and, as the induction hypothesis, that it takes log2m⎡ ⎤  
divisions to reduce m to 1 for any positive integer m < n.  Since n / 2⎡ ⎤ is a positive integer less 
than n for any integer n > 1, the number d of divisions necessary to reduce n / 2⎡ ⎤ to 1 satisfies the 
inequalities 2d−1 < n / 2⎡ ⎤ ≤ 2d .  To reduce n to 1, we do 1 division to reduce it to n / 2⎡ ⎤ and then 
d more divisions to reduce it all the way down to 1, so that the total number of divisions is d + 1.  
Multiplying the previous pair of inequalities by 2, we find that 2d < 2× n / 2⎡ ⎤ ≤ 2d+1.  If n is 
even, then n / 2⎡ ⎤ = n/2 so that 2d < n ≤ 2d+1.  If n is odd, then n / 2⎡ ⎤=(n+1)/2, so that 
2d < n +1 ≤ 2d+1.  Then certainly n ≤ 2d+1.  To show that 2d < n , we recall that since n is odd, 
n + 1 is even; so, since 2d  is even if d > 0, n + 1 must exceed 2d  by at least 2, so that 2d  < n.  If 
d = 0, then n / 2⎡ ⎤ = 1 so that n ≤ 2, but we eliminated this case by assuming that n > 2.  In any 
case, 2d < n ≤ 2d+1, so that it takes d + 1= log2 n⎡ ⎤  divisions to reduce n to 1, QED. 

 
The complexity of binary search is in O( log2 n ) which, as we know, grows more slowly 

than n, the complexity of sequential search.  For example, it could take as many as 1000000 
comparisons to search a size-1000000 dictionary using sequential search but no more than 20 
comparisons using binary search. 

 
6.2 Sorting algorithms 
 
 Since a sorted array can be searched much faster than an unsorted one, if an array has to 
be searched often it’s a good idea to sort it first.  This section discusses several sorting 
algorithms. 
 
 The simplest sorting algorithm is called Selection Sort.  You search for the smallest 
element in the array and put it in position 1 by exchanging it with the first element.  Then you 
search for the second-smallest element, which is the smallest element in the part of the array to 
the right of the first element, and put it in position 2 by exchanging it with the second element.  
You continue this process until all the elements except the largest one are in their right places; 
then the largest element too will be in its right place – the rightmost position – and the array will 
be sorted. 
 
 A purist may object that terms like the smallest element, the second-smallest element, etc. 
have a precise meaning only if all the elements are distinct.  If not, we can still state arbitrarily 
that x is "the" ith smallest element element of an array if i - 1 of the elements are less than or 
equal to x and all the other elements are greater than or equal to x. 
 
 This algorithm has two loops, one inside the other.  The inner loop finds the position of 
the smallest element in the sub-array A[i..n], which is the ith smallest element in the array, and 
the outer loop puts it in position i for i = 1, 2, …, n - 1, sorting the array into increasing order. 
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Here is the algorithm. 

 
procedure SelectionSort(n: natural; A: array[1..n] of an ordered type); 
    local variables i,j,pos: natural); 
    for i←1 to n-1 do                {The kth smallest element is in position k for all k, 1 ≤ k ≤ i -1.} 
        pos← i; 
        for j← i+1 to n do 
            if A[j] < A[pos] then pos← j; end if; 
        end for;    {pos is now the position of the smallest element in A[i..n], the ith smallest in A} 
        exchange A[i] with A[pos];                       {Now the ith smallest element is in position i too.} 
    end for; 

{Now the kth smallest element is in position k for all k, 1 ≤ k ≤ n - 1, and thus for k = n too.} 
end SelectionSort. 
 
 The inner loop is like the procedure max presented in the beginning of this chapter, with 
three differences.  It searches the sub-array A[i..n] instead of the whole array.  It finds the 
smallest rather than the largest element of an array.  And it finds the position rather than the value 
of that element, which is necessary if we want to exchange it with the element in position i.  I will 
assume that you are capable of adapting the trace and the proof of max to trace and prove the 
inner loop; so I will do so for the outer loop only. 
 
 First the trace, with the original array printed and then with i, pos and the current array 
printed at the end of each iteration of the outer loop. 
 

k 1 2 3 4 5 6 7 8 
    A[k] 5 3 2 7 2 3 5 2 
i=1, pos=3 2 3 5 7 2 3 5 2 
i=2, pos=5  2 2 5 7 3 3 5 2 
i=3, pos=8 2 2 2 7 3 3 5 5 
i=4, pos=5 2 2 2 3 7 3 5 5 
i=5, pos=6 2 2 2 3 3 7 5 5 
i=6, pos=7 2 2 2 3 3 5 7 5 
i=7, pos=8  2 2 2 3 3 5 5 7 
 
 Now the proof, assuming that the inner loop puts the index of the smallest element of the 
sub-array A[i..n] into the variable pos.  We show that for each i, the smallest i - 1 elements are all 
in their right places at the beginning of the ith iteration of the outer loop. 
 
 Basic step: i = 1.  Here there are 0 elements to consider; so the statement is trivially true. 
 
 Induction step.  Suppose that 1 ≤ i ≤ n - 1 and that at the beginning of iteration i, the 
smallest i - 1 elements are all in their right places.  The inner loop copies into the variable pos the 
index of the smallest element of the sub-array A[i..n].  That means that all the other elements of 
this sub-array are greater than or equal to A[pos].  The first i - 1 elements of the array are all less 
than or equal to A[pos] because they are the smallest i - 1 elements and A[pos] isn’t among them.  
This makes A[pos] the ith smallest element of the array according to our loose definition of the 
term.  The exchange puts this element in the ith position, so that now the smallest i elements are 
all in their right places.  At the end of the loop, i increases to i + 1, so that for this new value of i, 
the smallest i - 1 elements are all in their right places. 
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 Terminal step.  The outer loop is iterated at most n times and, for each of these, the inner 
loop is iterated at most n times, or at most n2 times altogether.  For any n this is a finite number; 
so after a finite number of operations i will increase to n and the algorithm terminates.  The loop 
invariant now states that the smallest n - 1 elements are in their right places, so that the nth 
smallest element (the biggest one) must be in the only place left (position n), which is its right 
place.  The array is now sorted in increasing order and the algorithm works, QED. 
 
 Note that the terminal step contains an early estimate of the number of iterations of the 
inner loop: at most n2, so that the time complexity of the algorithm is in O( n2).  Is this early 
estimate a good one?  When i = 1, the inner loop is iterated n-1 times; when i = 2 it is iterated 
n --2 times and so on, so that the total number of iterations is (n-1) + (n-2) +…+ 2 + 1 = n(n-1)/2, 
and we know that n2 is a good estimate for that expression.  That identity was chosen with more 
in mind than just an excuse to tell the joke about hand-shaking! 
 
 Another simple sorting algorithm is called Insertion Sort.  In this algorithm, we assume 
that the first i - 1 elements are in increasing order (but not necessarily the i - 1 smallest elements) 
and we insert the ith element into its right place among them.  Here is the algorithm. 
 
procedure InsertionSort(n: natural; A: array[1..n] of an ordered type); 
    local variables i,j: natural; x: the same type as an array element; 
    for i←2 to n do                                                {The first i - 1 elements are in increasing order.} 
        x←A[i]; j← i - 1;                                                       {Store A[i] for insertion into A[1..i-1].} 
        while j > 0 and A[j] > x do                           {A[i] should be somewhere to the left of A[j].} 
            A[j+1]←A[j]; 
            j← j - 1; 
        end while;                                              {Now everything in A[1..i-1] that’s bigger than A[i] 
                                                                                         has been pushed one space to the right.} 

        A[j+1]←x ;                                                 {Insert x, the old A[i], into the hole between  
                                                      the elements bigger than x and the ones less than or equal to x, 
                                                                         so that the first i elements are in increasing order.} 
    end for;                                                                {Now the whole array is in increasing order.} 
end InsertionSort. 
 
 This algorithm too makes n(n-1)/2 comparisons in the worst case – when the array is 
originally sorted in decreasing order and all the elements are distinct.  Its advantage over 
Selection Sort: if the array is originally nearly sorted in increasing order, and this happens fairly 
often in real applications, Insertion Sort makes far fewer than n(n-1)/2 comparisons.  Its 
disadvantage: in the worst case, it takes n(n-1)/2 operations to push to the right the elements in 
A[1..i -1] that are bigger than A[i] for all i, whereas Selection Sort makes only n-1 exchanges, 
each of which moves 3 array elements. 
 
 A variation of Insertion Sort, called Binary Insertion Sort, uses binary search to find the 
position in A[1..i-1] into which to insert A[i].  There are i possible places for A[i] to go; so the 
binary search does at most log2 i⎡ ⎤  comparisons to find the right slot.  Placing all n elements of 
the array takes at most log2 2⎡ ⎤+ log2 3⎡ ⎤+…+ log2 n⎡ ⎤  ≤ n log2 n⎡ ⎤  comparisons.  The number of 
comparisons done by this algorithm is in O( n log2 n ) but not the total number of operations, 
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because it does n(n-1)/2 pushes in the worst case.  I leave you to write a pseudocode for Binary 
Insertion Sort and to trace and prove the correctness of both types of Insertion Sort.  In what 
follows I will describe some algorithms that do O( n log2 n ) operations in total. 
 
 The simplest of these algorithms is Merge Sort.  It is based on the fact that two sorted lists 
of total length n can be merged into a single sorted list in O(n) time.  To illustrate the merging 
process, imagine a little red schoolhouse that is so out of date that the classes are segregated into 
girls’ classes and boys’ classes and so small that there is only one graduating class of each 
gender.  Each year the school holds a graduation ceremony in which all the graduating students 
walk onto the stage in increasing order of height to receive their diplomas.  The principal tells the 
home room teacher of each graduating class to sort his or her students in increasing order of 
height and then merges the two lines of students into a single line.   He measures the shortest girl 
against the shortest boy and sends the shorter of those two students to the first place in the coed 
line, with a tie decided in the girl’s favour out of chivalry.  Then he measures the shortest 
remaining boy against the shortest remaining girl and so on until either all the girls or all the boys 
are in the coed line.  Finally he sends the remaining students, either all girls or all boys, into the 
coed line with no comparisons.  In the following example, the numbers represent the height of the 
students in centimeters minus 160 and the girls’ numbers are underlined to distinguish them from 
the boys of the same height. 
 
Girls: 2  3  3  5  6  8  9 | Boys: 3  4  4  5  9 10 12 | Coed: 
Girls: 3  3  5  6  8  9 | Boys: 3  4  4  5  9 10 12 | Coed: 2 
Girls: 3  5  6  8  9 | Boys: 3  4  4  5  9 10 12 | Coed: 2  3 
Girls: 5  6  8  9 | Boys: 3  4  4  5  9 10 12 | Coed: 2  3  3 
Girls: 5  6  8  9 | Boys: 4  4  5  9 10 12 | Coed: 2  3  3  3 
Girls: 5  6  8  9 | Boys: 4  5  9 10 12 | Coed: 2  3  3  3  4 
Girls: 5  6  8  9 | Boys: 5  9 10 12 | Coed: 2  3  3  3  4  4 
Girls: 6  8  9 | Boys: 5  9 10 12 | Coed: 2  3  3  3  4  4  5 
Girls: 6  8  9 | Boys: 9 10 12 | Coed: 2  3  3  3  4  4  5  5 
Girls: 8  9 | Boys: 9 10 12 | Coed: 2  3  3  3  4  4  5  5  6 
Girls: 9 | Boys: 9 10 12 | Coed: 2  3  3  3  4  4  5  5  6  8 
Girls:| Boys: 9 10 12 | Coed: 2  3  3  3  4  4  5  5  6  8  9 
Girls:| Boys:10 12 | Coed: 2  3  3  3  4  4  5  5  6  8  9  9 
Girls:| Boys:12 | Coed: 2  3  3  3  4  4  5  5  6  8  9  9 10 
Girls:| Boys:| Coed: 2  3  3  3  4  4  5  5  6  8  9  9 10 12 
 
 This process does at most n - 1 comparisons because at least the tallest student, whether a 
girl or a boy, will be sent into the coed line with no comparison.  It moves all n students and, for 
each one, changes at most 3 indices, one for each of the lines, n times; so the total complexity is 
in O(n).  Having done the trace and the analysis, I leave it to you to write the pseudocode and 
prove its correctness. 
 
 Now suppose you have a size-n array to sort.  Initially it can be considered as n 
consecutive arrays, each of size 1, and a size-1 array is by definition sorted.  As a first step, you 
merge the first (i.e. leftmost) array with the second, the third with the fourth and so on, into 
sorted size-2 arrays, leaving a size-1 array at the extreme right if n is odd.  Then you merge these 
arrays into bigger ones and so on until you get a single sorted array of size n (see the illustration 
below in which n = 9). 
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|5|2|1|9|7|3|6|4|8| 
|2 5|1 9|3 7|4 6|8| 
|1 2 5 9|3 4 6 7|8| 
|1 2 3 4 5 6 7 9|8| 
|1 2 3 4 5 6 7 8 9| 

 
 In each step of this algorithm, the total number of operations needed to make each sub-
array is proportional to its length; so the total number of operations done by this step is 
proportional to the sum of the lengths of all the sub-arrays, which is n.  How many steps are 
there?  Initially there are n sub-arrays.  Suppose that after a certain number of steps there are i >1 
sub-arrays.  If i is even, then each sub-array gets merged with another one, leaving i/2 sub-arrays.  
If i is odd, then the rightmost array doesn’t get merged but each of the other i - 1 sub-arrays do, 
leaving (i -1)/2 + 1 = (i +1)/2 sub-arrays.  In either case, the number of sub-arrays is now i / 2⎡ ⎤.  
The number of steps is the number of times you have to divide n by 2, rounding up each time if 
necessary, to reduce it to 1, and we have already calculated this number: log2 n⎡ ⎤ .  This means 
that the total number of operations needed for this algorithm to sort an array of size n is in 
O(n log2 n), as advertised. 
 

To bound the number of comparisons from above, we make an early estimate: it takes at 
most n - 1 comparisons to merge two sorted arrays of total length n into a single sorted array, but 
we simplify n - 1 to n.  Now the total number of comparisons at each step is at most n; so the total 
number of comparisons done by the whole algorithm is at most n log2 n⎡ ⎤ . 

 
 Is this a good estimate?  We show that not only can’t Merge Sort do any better, but 
neither can any other sorting algorithm that is restricted to comparing array elements with each 
other.  We assume that all the elements are distinct so that there are n! possible orders into which 
they can be sorted.  Each comparison divides the pile of possible orders into two sub-piles and 
leaves you with one of them, depending upon the result of the comparison.  For example, if there 
are 3 elements x, y and z, then initially all 6 orders xyz, xzy, yxz, yzx, zxy, zyx are possible. Now 
compare x with y.  If x > y, then only the 3 orders yxz, yzx, zyx are possible, whereas if y > x only 
the other 3 orders are possible.  To minimize the maximum number of comparisons that a nasty 
opponent can force on you, you will choose a comparison that divides the pile of remaining 
orders into two piles of sizes as nearly equal as possible, and you can’t do any better than 
dividing a pile of size i into a pile of size i / 2⎣ ⎦ and a pile of size i / 2⎡ ⎤, allowing your opponent 
to leave you with the pile of size i / 2⎡ ⎤.  Whatever sorting algorithm you use, it will terminate 
when the number of possible orders has been reduced to 1.  It follows that no sorting algorithm 
can guarantee to sort a size-n array using fewer comparisons than the number of times you have 
to divide n! by 2, rounding up each time, to reduce it to 1, and this number is ⎡ log2(n!)⎤. 
 
 Now log2(n!)= log21 + log2 2  + … + log2 n . As you can see from the illustration below, 
this number is greater than the area under the curve y = log2 x  from x = 1 to x = n, which is 
log2 xdx1
n
∫  = (1/ ln 2) ln xdx1

n
∫  = (using elementary calculus) n log2 n − (n −1)/ ln 2.  On the 

other hand, n log2 n⎡ ⎤< n log2 n+n.  The difference between the upper bound and the lower bound 
is in O(n); so not only can’t you sort a size-n array in a number of comparisons that grows slower 
than the number required by Merge Sort, you can’t even make the coefficient of the fastest-
growing term any lower than 1.  All you can hope to do is shave off O(n) comparisons. 
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 When you program Merge Sort (and I hope you will do so), you will see that you need an 
auxiliary array of size n to do the merging.  You could merge each pair of sub-arrays into the 
corresponding positions in the auxiliary array and then copy the auxiliary array back into the 
original one, or you could save most of this copying by alternately merging from the original 
array to the auxiliary one and back and then, if the sorted array ends up in the auxiliary one, you 
copy it back into the original one.  But one way or another, you still need an auxiliary array. 
 
 There is an algorithm that sorts a size-n array in O(n log2 n) operations without using an 
auxiliary array.  It is called Heap Sort because it uses a data structure called a binary heap.  A 
binary heap is an array A with the property that for any i > 1, A[i] ≥ A[ i / 2⎣ ⎦].  It is easy to see 
that the smallest element in a binary heap is A[1].  A binary heap becomes easier to visualize if it 
is represented by a binary tree of the type illustrated below.  The binary heap operations we will 
need are inserting an element into the heap and removing the smallest element all the while 
preserving the heap property. 
 
 Imagine a prison in which the array index i represents the number of the cell into which 
the guard has put a prisoner and A[i] represents his fighting strength: the better he fights, the 
lower the number.  The best fighter, the barn boss, is housed in cell 1, closest to the exit.  
Whenever an order comes to release a prisoner, the guard releases the barn boss; so all the 
prisoners aspire to that status.  Accordingly, they arrange themselves into a hierarchy in which 
the prisoner in cell i > 1 is a slave of the one in cell i / 2⎣ ⎦, his boss, and by definition a slave can’t 
beat up his boss.  In the example below, the hierarchy is illustrated by a binary tree, where each 
prisoner (identified by his cell number and fighting strength) is linked to his boss, if he has one, 
and his two slaves, if he has two, by a line. 
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Cell no.  1  2  3  4  5  6  7  8  9              1:10    
Prisoner 10 30 20 40 50 25 55 52 42                                      
                                           2:30        3:20 
 
                                      4:40     5:50 6:25   7:55 
 
                                  8:52  9:42  
 
  

Now suppose a new man, with fighting strength 15, is thrown into jail.  The guard, being 
lazy, opens up cell #10 and puts him in.  This makes him a slave of prisoner #5 with fighting 
strength 50 (see the diagram below). 

 
Cell no.  1  2  3  4  5  6  7  8  9 10            1:10 
Prisoner 10 30 20 40 50 25 55 52 42 15  
                                           2:30        3:20 
 
                                      4:40     5:50  6:25  7:55 
 
                                  8:52  9:42 10:15 
 
 The new prisoner challenges his immediate boss to a fight, beats him up and trades places 
with him in the hierarchy, and the guard responds by putting each one in the other’s cell. Now the 
new prisoner is a slave of prisoner #2 with fighting strength 30 (see the diagram below). 
 
 
 
Cell no.  1  2  3  4  5  6  7  8  9 10            1:10 
Prisoner 10 30 20 40 15 25 55 52 42 50 
                                           2:30        3:20 
 
                                      4:40     5:15 6:25   7:55 
 
                                  8:52  9:42 10:50 
 
  
 Now he challenges his new immediate boss to a fight, beats him up, trades places with 
him in the hierarchy and swaps cells with him.  He is now a slave of prisoner #1 with fighting 
strength 10 (see the diagram below). 
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Cell no.  1  2  3  4  5  6  7  8  9 10            1:10 
Prisoner 10 15 20 40 30 25 55 52 42 50 
                                           2:15        3:20 
 
                                      4:40     5:30 6:25   7:55 
 
                                  8:52  9:42 10:50 
 
 He challenges his new immediate boss to a fight and gets beat up.  He has now found his 
appropriate slot in the hierachy.  This process is called promotion.  The promotion that takes the 
greatest number of comparisons is the one that promotes prisoner #n to the status of barn boss.  
His cell number gets divided by 2, rounding down each time, until it reaches 1.  The number of 
divisions necessary to do this is log2 n⎣ ⎦  (you can prove this assertion using the same method 
used in the case of rounding up); so this is the greatest number of comparisons a promotion can 
make. 
 
 Now an order comes to release a prisoner.  According to an agreement reached between 
the guard and the prisoners, the guard releases the barn boss.  Being lazy, he wants to minimize 
the distance he has to walk to survey all the prisoners; so he closes the last cell and puts the 
prisoner that used to occupy that cell into cell #1 vacated by the barn boss (see the diagram 
below). 
 
Cell no.  1  2  3  4  5  6  7  8  9               1:50 
Prisoner 50 15 20 40 30 25 55 52 42 
                                           2:15        3:20 
 
                                      4:40     5:30 6:25   7:55 
 
                                  8:52  9:42  
 
 This makes him the new barn boss, but he doesn’t deserve that status.  His two slaves 
have a fight for the right to challenge their undeserving boss.  Prisoner #2 wins that fight, 
challenges his boss, beats him up, trades places with him in the hierarchy and swaps cells with 
him (see the diagram below). 
 
Cell no.  1  2  3  4  5  6  7  8  9               1:15 
Prisoner 15 50 20 40 30 25 55 52 42 
                                           2:50        3:20 
 
                                      4:40     5:30 6:25   7:55 
 
                                  8:52  9:42 
 
 The poor guy has been demoted from position 1 to position 2, but he isn’t even worthy of 
that position.  His new slaves fight for the right to challenge him.  Prisoner #5 wins that fight, 
challenges his boss, beats him up, trades places with him in the hierarchy and swaps cells with 
him (see the diagram below). 
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Cell no.  1  2  3  4  5  6  7  8  9               1:15 
Prisoner 15 30 20 40 50 25 55 52 42 
                                           2:30        3:20 
 
                                      4:40     5:50 6:25   7:55 
 
                                  8:52  9:42 
 
 The poor guy has no more slaves; so he has reached is appropriate place in the hierarchy.  
This process is called a demotion.  The demotion that takes the greatest number of comparisons is 
the one that demotes the imposter barn boss into position #n.  The number of steps is log2 n⎣ ⎦ , 
but each step requires two comparisons, one between the two slaves for the right to challenge the 
boss and one for the challenge itself. 
 
 Once you have a heap, it is easy to convert it into an array sorted in decreasing order.  The 
smallest element is in position 1.  You remove it as shown above and then put it in position n.  
Now the sub-array A[1..n-1] is a heap and its smallest element, the second-smallest one in the 
whole array, is in position 1.  You remove it and put it in position n - 1, and so on until the 
biggest element is in position 1.  We trace this algorithm on the heap shown in the nearest 
diagram above.  In the table below, a vertical line separates what’s left of the heap with the sorted 
part of the array. 
 
                  Index    1  2  3  4  5  6  7  8  9 
                  Element 15 30 20 40 50 25 55 52 42 
                          20 30 25 40 50 42 55 52|15 
                          25 30 42 40 50 52 55|20 15 
                          30 40 42 55 50 52|25 20 15 
                          40 50 42 55 52|30 25 20 15 
                          42 50 52 55|40 30 25 20 15 
                          50 55 52|42 40 30 25 20 15 
                          52 55|50 42 40 30 25 20 15 
                          55|52 50 42 40 30 25 20 15 
 
 This process takes log2(n −1)⎣ ⎦ + log2(n − 2)⎣ ⎦ + … + log2(1)⎣ ⎦ ≤ n log2 n  demotion 
steps, each of which takes 2 comparisons; so the number of comparisons necessary to convert a 
heap into a sorted array is less than (and near to) 2 n log2 n .  But how many comparisons are 
necessary to convert an arbitrary array into a heap?  It would be tempting to insert the elements 
one at a time into a heap, but this would take about n log2 n  comparisons and there is a more 
efficient way.   An element A[i] is said to violate the heap condition if it is bigger than either 
A[2i] or A[2i+1], assuming these elements are actually in the array (i.e. if the prisoner in cell i has 
at least one slave who can beat him up).  Now, the last element that actually has any slaves is 
A[ n / 2⎣ ⎦].  We demote that element, so that the new A[ n / 2⎣ ⎦] doesn’t violate the heap condition.  
We then demote A[ n / 2⎣ ⎦-1], and so on until after we have demoted A[1] we have a heap.  We 
illustrate that process using a trace. 
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Index       1  2  3  4  5  6  7  8  9 
Element    40 20 55 15 50 42 52 25 30 
Demote 15: 40 20 55 15 50 42 52 25 30 
Demote 55: 40 20 42 15 50 55 52 25 30 
Demote 20: 40 15 42 20 50 55 52 25 30 
Demote 40: 15 20 42 25 50 55 52 40 30 

 
 This algorithm makes only O(n) comparisons.  Intuitively speaking, most of the prisoners 
undergo only a few demotions steps because they are close to the bottom of the binary tree.  The 
prisoners on the lowest level undergo no demotion steps because they have no slaves.  The 
prisoners one level up undergo at most one demotion step and there are at most n of them 
(actually, at most n/2 but I’m too lazy to prove that assertion and multiplicative constants are 
irrelevant in O analyses).  There are half as many prisoners one level up – at most n/2 of them – 
and they undergo at most two demotion steps.  There are at most n/4 on the next level, and they 
undergo at most three demotion steps, and so on.  The total number of demotion steps is at most 
n(1/1 + 2/2 + 3/4 + 4/8 + 5/16 + …).  Of course there are only a finite number of levels, but the 
sum in parentheses can only go up if you let it continue to infinity.  Now there is an algebraic 
trick for finding the exact value of sum of this infinite series (see Section 10.1), but all we need to 
know is that the series converges.  Since the ratio of each term to the one before it tends to 
1/2 < 1, the ratio test says that the series converges; so the total number of demotion steps is 
bounded by a constant multiplied by n.  Each demotion step involves 2 comparisons; so the 
number of comparisons too is in O(n) and so is the total complexity of turning a size-n array into 
a heap. 
 
 This means that the total number of comparisons needed by Heap Sort to sort a size-n 
array is 2 n log2 n  + O(n) – twice as many as Merge Sort.  So now we have two algorithms that 
sort a size-n array in worst-case time O( n log2 n ).  There is Heap Sort, which does twice as many 
comparisons as Merge Sort but doesn’t use an auxiliary array and has the added advantage that if 
you only want the i smallest elements you can stop after finding them.  And there is Merge Sort, 
which is twice as fast as Heap Sort but uses an auxiliary array and makes you sort the entire array 
no matter how few of the smallest elements you want to find.  So which of these two algorithms 
is used in the real world to sort arrays?  The winner is (drum roll, please) … neither of them!  
Instead, it is another sorting algorithm called Quick Sort, which has a worst-case time complexity 
of O( n2).  And a complicated analysis, which I will spare you, shows that even in the average 
case it makes about 1.4 n log2 n  comparisons, whereas Merge Sort makes only n log2 n  of them 
even in the worst case.  But experiments have shown that with enough optimizations, Quick Sort 
can be made to run faster than Merge Sort on randomly generated arrays.  These optimizations 
are outside the scope of a mathematical monograph like this one; so I will not discuss Quick Sort 
any further.  Besides, I haven’t thought of a funny way to illustrate it. 
 
 Do you recall that in the beginning of Chapter 5 I supposed the existence of two sorting 
algorithms: Algorithm S that sorts a size-n array in a number of operations for which n2 is a 
good estimate and Algorithm M that sorts a size-n array in a number of operations for which 
n log n  is a good estimate?  Now we can identify these two algorithms: S stands for Selection 
Sort and M stands for Merge Sort. 
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6.3 Number theory algorithms 
 
 As a first example, we present an algorithm for computing the quotient and the remainder 
of the division of a non-negative integer a by positive integer d.  Suppose you have a ≥ 0 candies 
and you want to distribute them to d > 0 children so that each child gets the same number q of 
candies (otherwise some of the children will cry) and there are r < d candies left over for you 
(otherwise all the children will call you a pig).  As long as there are at least as many candies as 
children, you give one candy to each child, keeping a record of the number q of candies you have 
given to each child and the number r of candies you have left.  When there are fewer candies left 
than children, q will be the quotient and r will be the remainder.  Here is the algorithm. 
 
procedure divide(a,d,q,r: natural) 

{If d > 0, this algorithm finds q and r such that a = dq + r and 0 ≤ r < d.} 
    r←a; q←0; 
    while r ≥ d do                                                                    {loop invariant: a = dq + r and r ≥ 0} 
        q←q + 1; 
        r←r - d; 
    end while; 
end divide. 
 
Trace for a = 100 and d = 7: 
q   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14 
r 100  93  86  79  72  65  58  51  44  37  30  23  16   9   2 
 
Since 100 = 7×14 + 2 and 0 ≤ 2 < 7, the algorithm works for this example. 
 

Correctness proof. 
 

Precondition: d > 0.  
Postcondition: The algorithm terminates with a = dq + r and 0 ≤ r < d. 

 
Basic step.  At the beginning of the first iteration of the loop, r = a and q = 0; so 

qd + r = a and r ≥ 0 because a is a natural number, which is non-negative by definition. 
 

Induction step.  Suppose that at the beginning of a given iteration a = dq + r and r ≥ 0 
and that r ≥ d so that the body of the loop will be executed.  The first instruction in the loop adds 
1 to q, which adds d to dq + r.  Then the second instruction subtracts d from r, which subtracts d 
from dq + r, so that dq + r has the same value at the beginning of the next iteration as it did at the 
beginning of this one, which is a.  Also, since r ≥ d at the beginning of this iteration and d is 
subtracted from r, r ≥ 0 at the beginning of the next iteration; so the loop invariant will be true at 
the beginning of the next iteration. 
 

Terminal step.  Since d > 0, each iteration of the loop subtracts at least 1 from r, which 
was initially a, so that after at most a steps, r will be less than d and the algorithm will terminate.  
The loop invariant says that a = qd + r and that r ≥ 0, and since now d < r, 0 ≤ r < d.  The 
algorithm works, QED. 
 
 Note that during the terminal step we gave the time-complexity analysis of the algorithm: 
O(a).  The algorithm you learned in school treats one digit of a at each iteration, and since the 
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number of decimal digits of a > 0 is log10 a⎣ ⎦+1 (prove it!), the complexity of this algorithm is in 
O( log a ).  As an exercise, write a pseudocode for that algorithm, where the numbers are 
represented not in decimal but in binary. 
 
 The next example is an algorithm for identifying all the prime numbers up to n.  It is 
called the sieve of Eratosthenes after the ancient Greek mathematician who discovered it.  You 
write down all the positive integers less than or equal to n except 1.  You cross out all the 
multiples of 2 except 2 itself.  Then you cross out all the multiples of 3 except 3 itself.  Since 4 is 
already crossed out, you ignore it.  Since 5 is not crossed out, you cross out all its multiples 
except 5 itself, and so on until you get to n/2 (or a smaller number, as we shall see).  The numbers 
that are not crossed out are the primes less than or equal to n.  In the following trace, where 
n = 114, a number is underlined instead of being crossed out.   Here is the initial list of numbers. 
 
       7  13  19  25  31  37  43  49  55  61  67  73  79  85  91  97 103 109 
   2   8  14  20  26  32  38  44  50  56  62  68  74  80  86  92  98 104 110 
   3   9  15  21  27  33  39  45  51  57  63  69  75  81  87  93  99 105 111 
   4  10  16  22  28  34  40  46  52  58  64  70  76  82  88  94 100 106 112 
   5  11  17  23  29  35  41  47  53  59  65  71  77  83  89  95 101 107 113 
   6  12  18  24  30  36  42  48  54  60  66  72  78  84  90  96 102 108 114 
   
The multiples of 2 are all on the second, fourth and sixth line, making them easy to cross out.  
After you cross them out, except for 2 itself, you get this list. 
 
       7  13  19  25  31  37  43  49  55  61  67  73  79  85  91  97 103 109 
    2   8  14  20  26  32  38  44  50  56  62  68  74  80  86  92  98 104 110 
    3   9  15  21  27  33  39  45  51  57  63  69  75  81  87  93  99 105 111 
    4  10  16  22  28  34  40  46  52  58  64  70  76  82  88  94 100 106 112 
    5  11  17  23  29  35  41  47  53  59  65  71  77  83  89  95 101 107 113 
    6  12  18  24  30  36  42  48  54  60  66  72  78  84  90  96 102 108 114 
 
The multiples of 3 are all on the third and sixth line, and the ones on the sixth line have already 
been crossed out. 
 
       7  13  19  25  31  37  43  49  55  61  67  73  79  85  91  97 103 109 
    2   8  14  20  26  32  38  44  50  56  62  68  74  80  86  92  98 104 110 
    3   9  15  21  27  33  39  45  51  57  63  69  75  81  87  93  99 105 111 
    4  10  16  22  28  34  40  46  52  58  64  70  76  82  88  94 100 106 112 
    5  11  17  23  29  35  41  47  53  59  65  71  77  83  89  95 101 107 113 
    6  12  18  24  30  36  42  48  54  60  66  72  78  84  90  96 102 108 114 
 
Note that the smallest multiple of 3 that you crossed out for the first time is 9.  The multiples of 4 
have already been crossed out as multiples of 2.  The multiples of 5 are all on ascending 
diagonals, making them easy to cross out too. 
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       7  13  19  25  31  37  43  49  55  61  67  73  79  85  91  97 103 109 
    2   8  14  20  26  32  38  44  50  56  62  68  74  80  86  92  98 104 110 
    3   9  15  21  27  33  39  45  51  57  63  69  75  81  87  93  99 105 111 
    4  10  16  22  28  34  40  46  52  58  64  70  76  82  88  94 100 106 112 
    5  11  17  23  29  35  41  47  53  59  65  71  77  83  89  95 101 107 113 
    6  12  18  24  30  36  42  48  54  60  66  72  78  84  90  96 102 108 114 
 
Note that the smallest multiple of 5 that you crossed out for the first time is 25.  The multiples of 
6 have already been crossed out as multiples of 2 or 3.  The multiples of 7 are all on descending 
diagonals, making them easy to cross out too (now you know why I wrote 6 lines of numbers). 
 
       7  13  19  25  31  37  43  49  55  61  67  73  79  85  91  97 103 109 
    2   8  14  20  26  32  38  44  50  56  62  68  74  80  86  92  98 104 110 
    3   9  15  21  27  33  39  45  51  57  63  69  75  81  87  93  99 105 111 
    4  10  16  22  28  34  40  46  52  58  64  70  76  82  88  94 100 106 112 
    5  11  17  23  29  35  41  47  53  59  65  71  77  83  89  95 101 107 113 
    6  12  18  24  30  36  42  48  54  60  66  72  78  84  90  96 102 108 114 
 
Note that the smallest multiple of 7 that you crossed out for the first time is 49.  It seems as if the 
smallest multiple of d that gets crossed out for the first time will be d2.  The multiples of 8, 9 and 
10 have already been crossed out as multiples of 2 or 3 or 5.  And since 112 = 121 > 114, all its 
multiples ≤ 114 have already been crossed out; so you can stop now. 
 
 On a computer you can’t cross out numbers.  Instead, you make an array P of size n, and 
itialize P[i] to 1 for every i from 2 to n.  To cross out i, you set P[i] to 0.  At the end, the primes 
≤ n are the numbers i, 2 ≤ i ≤ n, such that P[i] = 1.  Here is the algorithm. 
 
 
procedure primes(n: natural; P: array[2..n] of natural) 
    local variables i,d: natural;  
    for i←2 to n do P[i]←1 end for; 
    d←2; 
    while d*d ≤ n do                                               {If i is a composite number < d×d, then P[i]=0} 
        if P[d] = 1 then                                                          {d is a prime, otherwise d is composite} 
            for i←2*d to n in steps of d do P[i]←0; end for; 
        end if; 
        d←d+1; 
    end while;                                                                {For all i, P[i]=1 if and only if i is a prime.} 
end primes. 
 
The trace having already been done, here is the correctness proof. 
 
 It is clear that if i is a prime, P[i] = 1, because the inner loop sets P[i] to 0 only if i is a 
multiple of some integer d > 1 and i ≠ d; so all we need to prove is that if i is a composite number 
≤ n, then P[i] will get set to 0 by the time the algorithm has terminated. 
 
 The loop invariant says that if i is a composite number < d×d, then P[i] = 0.  As is turns 
out, you don’t need induction to prove this loop invariant.  Since i is composite, it has some 
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factor greater than 1 but less than i.  Let c be the smallest such factor (there must be a smallest 
one – that’s the idea behind proving that the smallest exception isn’t).  We first show that c < d.  
The quotient i/c is also a factor of i which is greater that 1 but less than i.  Since c is the smallest 
such factor of i, i/c ≥ c, so that i ≥ c×c.  Since i < d×d, c×c < d×d; so, since c and d are both 
positive, c < d.  We now prove that c must be a prime.  If not, then c would have a factor f greater 
than 1 but less than c, in which case f would also be a factor of i, contradicting the minimality of 
c.  Since c is a prime, P[c] never gets set to 0; so when d was equal to c, the inner loop got 
executed and, since i is a multiple of c that is greater than c but less than or equal to n, P[i] got set 
to 0. 
 
 Terminal step.  After at most n  iterations of the outer loop, d×d will be bigger than n 
and the algorithm terminates.  Any i ≤ n is less than d×d, so that, by the loop invariant, P[i] = 0.  
Eratosthenes got it right, QED. 
 
 How many operations does this algorithm take as a function of n?  As an early estimate, 
we note that for every iteration of the outer loop the inner loop is executed at most n times.  Each 
iteration of the outer loop increases d by 1, starting with d = 2 and ending when d×d > n, so that 
the outer loop is executed about √n times.  This makes the total complexity of the algorithm 
O( n n ). 
 
 So far all the early estimates I have done have been good estimates.  Is this early estimate 
too a good estimate?  In estimating the number of iterations of the inner loop, I said that it gets 
executed at most n times for each d.  In fact, it gets executed n /d⎣ ⎦-1 times.  This number can 
only increase if we ignore the -1 and the floor function, so that the total number of iterations is at 
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and the complexity of the algorithm is in O( n log n ). 
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                   1             2                3                                                              n-1        n 
 
 Is this a good estimate?  Ignoring -1 adds √n, ignoring the floor function adds at most 
√n and replacing the area of the rectangles by the area under the curve adds only a constant; so 
these early estimates don’t affect the growth rate of the time complexity.  But I did make another 
assumption: that the inner loop would get executed for every value of d.  In fact, the inner loop 

only gets executed when d is a prime.  The real complexity is n 12 +
1
3 +
1
5 +
1
7 + ...+ 1p

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ , where p 

is the biggest prime less than or equal to √n.  To estimate that sum, we use a very advanced 
theorem of number theory – the prime number theorem – that says that for big n the number of 
primes less than or equal to n is about n/ loge(n), so that the odds that some big number n is a 
prime is about 1/ loge(n).   If instead of integrating 1/x we integrate 1/ x loge(x) we get 
loge loge(n)( ) , giving us a complexity estimate of O( n log log n ), which is a good estimate. And 
the moral of the story is?  The more mathematics you know, the better you will be at estimating 
the complexity of algorithms! 
 
 The next algorithm on the list is one that finds all the prime factors of an integer n ≥ 2 
in increasing order (I proved earlier that n can be expressed uniquely as a product of primes in 
increasing order but I didn’t yet say how to do it).  For example, let n = 8484.  We search for the 
smallest divisor of 8484 that is greater than 1.  Starting with 2, we keep increasing the candidate 
divisor by 1 until we find an integer that divides 8484.  As I pointed out in the proof of the 
previous algorithm, the smallest number greater than 1 that divides some number or other must 
be a prime.  Since 2 divides 8484, it is our first prime factor.  Now we search for the smallest 
divisor >1 of the quotient 8484/2 = 4242.  Again 2 divides 4242; so 2 is our second prime factor 
and we search for the smallest divisor >1 of the quotient 4242/2 = 2121.  Since 2 doesn’t divide 
2121 we try the next number 3, and since 3 does divide 2121, 3 must divide 8484 and we call 3 
our third prime factor and search for the smallest divisor >1 of the quotient 2121/3 = 707.  We 
don’t have to start the search at 2 because if 2 divided 707 it would divide 2121 and we know that 
it doesn’t; so we start with 3.  We find that 707 isn’t divisible by 3, 4, 5 or 6 but it is divisible by 



 65 
7; so 7 is our next prime factor and we search for the smallest divisor of 707/7 = 101 starting with 
7.  We find that 101 isn’t divisible by 7, 8, 9 or 10.  Do we need to try 11?  Since 11×11 > 121, if 
11 divided 121, the quotient, which is also a factor of 101, would be smaller than 11, and we 
already know that no integer <11 divides 101; so 101 must be a prime – our last prime factor – 
and the prime factors of 8484 are, in increasing order, 2, 2, 3, 7, 101. 
 
 Here is the algorithm. 
 
procedure prime_factors(n: natural; i: natural; P: array of natural); 

{If n ≥ 2, then P[1], P[2],…, P[i] are the prime factors of n in increasing order.} 
    local variables d,m,i: natural; 
    m←n; i←0; d←2; 
    while d*d ≤ m do                            {Loop invariant: P[1]×…×P[i]×m = n,  P[1] ≤ … ≤ P[i], 
                                           these numbers are all primes ≤ d and no integer >1 but < d divides m.} 
        if d divides m then 
            i← i + 1; P[i]←d; m←m/d; 
        else 
            d←d + 1; 
        end if 
    end while; 
    i← i + 1; P[i]←m; 
end prime_factors. 
 
 And here is the correctness proof.  The precondition is that n ≥ 2 – otherwise the 
algorithm will make n = 0 or 1 the sole prime factor and those numbers are not primes.  The 
postcondition is that P[1]×…×P[i] = n, that  P[1] ≤ … ≤ P[i] and that these numbers are all 
primes. 
 
 Basic step.  At the beginning of the first iteration of the loop, i = 0, so that there are no 
primes yet.  The loop invariant says that m = n, which is true because m was set to n, and that no 
integer > 1 but < 2 divides m, which is true because there aren’t any such integers. 
 
 Induction step.  Suppose that at the beginning of some iteration of the loop, 
P[1]×…×P[i]×m = n,  P[1] ≤ … ≤ P[i], these numbers are all primes ≤ d and no integer >1 but 
< d divides m and that d×d ≤ m so that the body of the loop will be executed.  There are two 
cases to consider. 
 
 Suppose that d divides m.  Then d is the smallest integer >1 that divides m; so d is a 
prime.  The instructions i← i + 1 and P[i]←d make P[i], for the new value of i, a prime ≤ d, so 
that P[1] ≤ … ≤ P[i] and these numbers are all primes ≤ d, and also make P[1]×…×P[i]×m equal 
to n×d.  Then the instuction m←m/d makes P[1]×…×P[i]×m equal to n again.  Any integer that 
divides the new m = the old m/d must divide the old m too, so that no integer >1 but < d divides 
the new m either, and the whole loop invariant is satisfied. 
 
 Now suppose that d doesn’t divide m.  Then no integer >1 but < d+1 divides m, and the 
instruction d←d + 1 arranges that for the new value of d, no integer >1 but < d divides m.  Also, 
all the primes ≤ d + 1 = the new d.  The rest of the loop invariant is unaffected by that instruction; 
so again the whole loop invariant is satisfied. 
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 Terminal step.  Each iteration of the loop either decreases m or increases d, so that after a 
finite number of iterations, d×d will grow greater than m.  The loop invariant says that no integer 
>1 but < d divides m.   We show that m is a prime.  If not, m would have a factor c greater than 1 
but < m so that c ≥ d and m/c, which is also a factor of m, satisfies m/c ≥ d.  Then m ≥ d×d, 
contradicting the termination condition.  The instructions i← i + 1 and P[i]←m arrange that the 
new P[i] is a prime, so that P[1],…,P[i] are all primes.  Since by the loop invariant 
P[1]×…×P[i -1]×m = n and P[i] = m, P[1]×…×P[i] = n.  By the loop invariant, if i > 1, then 
P[1] ≤ … ≤ P[i-1] and these numbers are all primes ≤ d.  It remains to prove that if i > 1, then 
P[i -1] ≤ P[i].  At the beginning of the last iteration of the loop, d×d ≤ m.  If d divides m, then 
d ≤ m/d, so that d ≤ the new m.  Since at the end of the algorithm P[i -1] = d and P[i] = m, 
P[i -1] ≤ P[i].  If d doesn’t divide m, then at the end of the algorithm P[i -1] ≤ d ≤ d×d ≤ m = P[i].  
The algorithm works, QED. 
 
 How many operations does this algorithm do as a function of n?  Each iteration of the 
loop either divides m by at least 2 or else adds 1 to d.  If n is a prime, then each iteration will add 
1 to d and there will be about n  iterations.  This is the worst case when n is large, because 
adding 1 to d multiplies d×d by less than 2 unless d = 2; so it contributes less than dividing m by 
d towards approaching the termination condition.  The complexity of this algorithm is thus in 
O( n ).  If you want to find a precise upper bound, try to prove by generalized induction that the 
number of iterations is never greater than n⎣ ⎦−1 unless n = 8. 
 
 It would be tempting to make d run only over primes, but to do so, you’d have to first pre-
compute a list of all the primes less than or equal to n , and that takes more time than the 
factorizing algorithm.  One optimization that is often used is to make d skip all the multiples of 2 
except 2 and all the multiples of 3 except 3.  Then d would run over the following list of 
numbers: 2, 3, 5, 7, 11, 13, 17, 19, 23, 25, … .  How would you generate that list of numbers?  
Starting with 5, the numbers increase alternately by 2 and 4; so you keep a variable c that 
alternates between 2 and 4 and add c instead of 1 to d as soon as d increases to 5.  Try 
programming that version of the factorization algorithm – it's the one commonly used. 
 
 There are factorization algorithms that are asymptotically faster than O( n ), but none 
that runs in a time proportional to a power of the number of digits in the decimal representation 
of n, although it hasn’t yet been proved that no such algorithm exists.  If you discover such an 
algorithm, all the world’s spy organizations will be after you, because a commonly used method 
of coding messages depends on the fact that big integers can’t (yet) be factored quickly and your 
discovery will make their messages insecure.  That is the premise behind the film Sneakers. 
 
 Number theory has been used to code messages for thousands of years.  One such code 
was invented by Julius Ceasar.  To code a message, you take every letter in the message and 
advance it by 3 letters in the alphabet, so that A becomes D, B becomes E and so on until W 
becomes Z.  Now X, Y and Z have no code and A, B and C aren’t the code for anything; so X is 
coded as A, Y as B and Z as C.  Number theory comes in because if you set A = 0, B = 1, … , 
Z = 25, then the coded letter = (the original letter + 3) mod 26 and the original letter = (the coded 
letter – 3) mod 26. 
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 Suppose that Julius Caesar wants to engage his enemy Pompeii in battle.  He sends his 
general a message instructing him to do so.  He would, of course, write his message in Latin 
before coding it, but we’ll write it in French instead.  The message is ALLEZY (contracted from 
ALLEZ-Y to avoid giving it away) and is coded as DOOHCB so that any spy intercepting the 
message will think that the courier carrying the message is some kind of nut and let him pass.  
The general receives the message, decodes it and understands what Caesar wants him to do but, 
being in the field, he has information that Caesar doesn’t have: the enemy is not Pompeii, as 
Caesar thinks, but someone whose army is too ferocious for Caesar’s army to defeat.  To explain 
his refusal to engage this army in battle, he sends a coded message to Caesar identifying the 
enemy: AHQD.  You decode the message.  The answer appears at the end of this chapter.
 
 As a final example, we consider two algorithms for calculating GCD(a,b), the greatest 
common divisor of the integers a and b, defined as the greatest integer d such that d divides a and 
d divides b.  Note that GDC(0,0) is not defined.  Every integer d divides 0; so the set of common 
divisors of 0 and 0 is the set of all the integers, which has no greatest member.  On the other 
hand, if a ≠ 0, GCD(a,0) = GCD(0,a) = |a| , the absolute value of a, because every integer divides 
0, so that GCD(a,0) = GDC(0,a) = the greatest divisor of a, which is |a|.  In general, 
GCD(a,b) = GCD(|a|,|b|), and it is a positive integer, because if d divides a, then both +d and –d
divide both +a and –a. 
 
 The greatest common divisor of two positive integers a and b can be expressed in terms of 
the multiset (set whose elements are not necessarily distinct) of prime factors of each of them –
call these multisets F(a) and F(b).  Then GCD(a,b) is the product of all the prime factors in 
F(a)∩F(b).  For example, F(6)={2,3} and F(9)={3,3}, the intersection of these two multisets is 
{3} (see the left Venn diagram below) and GCD(6,9)=3.  Similarly (see the right Venn diagram 
below) GCD(288,330)=6. 
 
 
F(6) F(9)                   F(288)                                                        F(330) 
                                                                                                2        2                  11 
              2           3          3                                                                     2 
                                                                                              2      2                            5 
                                                                                                                   3 
                                                                                                    3 
 
 
 
 The least common multiple of a and b, denoted by LCM(a,b), is defined as the smallest 
positive integer m such that a divides m and b divides m.  Clearly (which means "I’m too lazy to 
prove it; so you do it") LCM(a,b) is the product of all the prime factors in F(a)∪F(b).  For 
example, LCM(6,9) = 2×3×3 = 18.  How would you calculate LCM(288,330)?  You could 
multiply all the prime factors in F(288)∪F(330), but there is an easier way.  The product ab is 
the product of all the prime factors in F(a) multiplied by the product of the prime factors in F(b), 
which includes all the prime factors in F(a)⊕F(b) once and all the prime factors in F(a)∩F(b) 
twice; so to go from F(ab) to F(a)∪F(b) you have to divide ab by the product of all the prime 
factors in F(a)∩F(b) so that they will be included only once.  This means that 
LCM(a,b) = (ab)/GCD(a,b), but if you want to avoid working with unnecessarily big numbers 
you wouldn’t use that formula as is.  For example, LCM(6,9) = (6×9)/3 = 54/3 = 18, but you can 
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avoid working with such a big number as 54 by dividing first: either calculate 
(6/3)×9 = 2×9 = 18 or calculate (6/2)×6 = 3×6 = 18.  Similarly LCM(288,330) = 288×330/6 = 
288×55 = 1440×11 = 15840.  In general, once you know GCD(a,b) you can calculate LCM(a,b) 
in O(1) operations, so that any algorithm for computing GCD also computes LCM – you get two 
for the price of one (plus O(1) more operations). 
 
 One algorithm for computing GCD follows from the above expression of GCD(a,b) in 
terms of the prime factors of a and b: you factorize a and b, compute F(a)∩F(b) and take the 
product of all its members.  Using the above factorization algorithm, this takes O( | a | + | b | ) 
operations in the worst case, when | a | and | b  are both primes.  A somewhat more efficient 
version of the same procedure is illustrated by the example below.  Suppose you want to 
calculate GCD(288,330).  You initialize g to 1, d to 2, n to 288 and m to 330.  Since 2 divides 
both 288 and 330, you multiply g by 2 (it is now 2), divide n by 2 (it is now 144) and divide m by 
2 (it is now 165).  Since 2 doesn’t divide both 144 and 165, you increase d from 2 to 3.  Since 3 
divides both 144 and 165, you multiply g by 3 (it is now 6), divide n by 3 (it is now 48) and 
divide m by 3 (it is now 55).  Since 3 doesn’t divide both 48 and 55 you increase it to 5 
(remember, we’re skipping multiples of 2 and 3 except 2 and 3 themselves), which also doesn’t 
divide both 48 and 55, and then to 7, which you don’t need to test because 7×7 = 49 > 48.  The 
final value of g, which is 6, is GCD(288,330).  This algorithm takes O(min( | a | , | b | )) 
operations in the worst case – when GCD(a,b) = 1.  I could ask you to write a pseudocode for this 
algorithm and prove its correctness, but I won’t, because there is a more efficient way to compute 
GCD(a,b). 
 
 Here is the pseudocode of the algorithm, the so-called Euclidean algorithm.  It is an 
optimized version of Euclid’s algorithm for computing GCD(a,b). 
 
natural function Euclid(a,b: integer); 

                        {If a and b are not both 0, Euclid(a,b) is the greatest common divisor of a and b.} 
    local variables m,n,r: natural; 
    m←max(abs(a),abs(b)); n←min(abs(a),abs(b));                    {abs(x) is the absolute value of x} 
    while n > 0 do                               {Loop invariant: m > 0, n ≥ 0 and GCD(m,n) = GCD(a,b).} 
        r←m mod n;                                                      {r is the remainder of the division of m by n} 
        m←n; 
        n← r; 
    end while; 
    return m;                                                                                        {m = GCD(m,0) = GCD(a,b)} 
end Euclid. 
 
 Let’s trace this algorithm by computing GCD(-288,330). 
 
r      42  36   6   0 
m 330 288  42  36   6 (value returned) 
n 288  42  36   6   0 
 
 The algorithm returns the correct value of GCD(-288,330).  It’s black magic!  Or, at least 
it seems like black magic until you observe that GCD(330,288) = GCD(288,42) = GCD(42,36) = 
GCD(36,6) = GCD(6,0) = 6, and if you don’t believe me, calculate all these greatest common 
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divisors the old way.  Is it a coincidence that GCD(m,n) stays the same from one iteration of the 
loop to the next? 
 
 Let (m,n) be a pair of positive integers.  Then there are integers q and r such that 
m = qn + r and 0 ≤ r < n.  If a non-zero integer d divides n and r, then d must divide m: m/d is the 
integer q(n/d) + (r/d).  Every common divisor of n and r is a common divisor of m and n.  
Similarly, if d divides m and n, then d must divide r: r/d is the integer (m/d) - q(n/d).  Every 
common divisor of m and n is a common divisor of n and r.  The set of common divisors of n and 
r is equal to the set of common divisors of m and n.  Since m > 0 and n ≥ 0, this set has a greatest 
member, so that the greatest common divisor of n and r is equal to the greatest common divisor 
of m and n – that is, GCD(n,r) = GCD(m,n).  This is most of the induction step of the following 
correctness proof. 
 
 Precondition: a and b are not both 0; otherwise Euclid(a,b) = 0 and GCD(0,0) is not 
defined. 
 
 Postcondition: Euclid(a,b) = GCD(a,b). 
 
 Basic step.  At the beginning of the first iteration of the loop, m is the larger of the 
absolute value of a and the absolute value of b and n is the smaller one.  These numbers are both 
non-negative and since they are not both 0, the larger one m is positive.  Also, 
GCD(m,n) = GCD(a,b) because GCD(a,b) is not changed by changing the sign of a and/or b or 
by exchanging them.  The loop invariant is satisfied. 
 
 Induction step: Suppose that at the beginning of some iteration of the loop, the loop 
invariant is satified and that n > 0 (the condition for the body of the loop to be executed), so that 
m and n are both positive and GCD(m,n) = GCD(a,b).  As we have shown above, if r is the 
remainder of the division of m by n, then GCD(n,r) = GCD(m,n), so that GCD(n,r) = GCD(a,b).  
When n is copied into m and r is copied into n, for the new values of m and n, 
GCD(m,n) = GCD(a,b).  Also, since n was positive, m will be positive, and since r is always non-
negative by the definition of remainder, n will be non-negative; so the loop invariant is satisfied 
at the beginning of the next iteration. 
 
 Terminal step.  Since, by the definition of remainder, r < n, when r is copied into n, the 
new n will be less than the old one but still non-negative.  After a finite number of iterations, n 
must drop to 0 and the algorithm jumps out of the loop.  By the loop invariant, 
GCD(m,n) = GCD(a,b).  But now n = 0 and, since m > 0 by the loop invariant, GCD(m,n) = m.  
The algorithm returns  m =GCD(a,b), so that Euclid(a,b) = GCD(a,b).  Euclid got it right, QED. 
 
 How many iterations will this algorithm do as a function of n = min(|a| ,|b|) in the worst 
case?  To calculate the greatest number d of iterations that this algorithm will do as a function of 
n, we ask the inverse question: what is the smallest value of n that will force this algorithm to do 
d iterations?  Call this number f(d).  Then, if n < f(d), the algorithm will do fewer than d iterations 
– that is, at most d - 1 of them. 
 
 If n = 0 the algorithm will do 0 iterations; so f(0) = 0.  If n = 1 the algorithm will do 1 
iteration because dividing by 1 leaves a remainder of 0; so f(1) = 1.  If n = 2, the algorithm will 
do either 1 iteration (if the bigger number is even) or two of them (if the bigger number is odd); 
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so f(2) = 2.  For d > 2, consider the sequence of successive values n = xd ,xd−1,...,x1,x0 = 0 taken 
by the variable n.  When n = xi , m will be xi+1 and r will be xi−1.  This observation holds for 
i =1, 2, 3,…, d - 1 and can be made to hold for i = d by defining xd+1 to be max(|a|,|b|).  We 
recall that m = qn + r for some integer q, so that xi+1 = qxi + xi−1.  In general, xi+1 > xi > xi−1, 
the sole exception being that xd+1 could be equal to xd  if |a| = |b|.  In that case only one iteration 
will be done; so this case can be ignored since d > 2.  The general case of the inequality implies 
that m > n > r so that q ≥ 1.  Given n and r, m is minimized by setting q equal to 1 so that 
xi+1 = xi + xi−1 for each i ≥ 2.   To minimize n for a given value of d, we set x0 to 0, x1 to 1, x2 
to 2 and for each i ≥ 2 we set xi+1 = xi + xi−1.  This means that n = f(d) (and m = f(d+1)) where 
f(0) = 0, f(1) = 1, f(2) = 2 and f(i) = f(i -1) + f(i - 2) for every i ≥ 3.  This recurrence is the same 
one satisfied by the Fibonacci numbers; the only difference is the second Fibonacci number is 1 
and the third one is 2; so that unless d = 0, f(d) is the (d+1)st Fibonacci number.  If you want to 
make the algorithm do d iterations for the smallest possible positive a and b, you make a and b 
the (d+1)st and (d+2)nd Fibonacci number, respectively.  For example, the fifth Fibonacci 
number is 5 and the sixth one is 8.  The sequence of values taken by n will be 5,3,2,1,0 – it will 
take 4 iterations for the algorithm to terminate. 
 
 Inversely, if n = min(|a|,|b|) is less than the (d+1)st Fibonacci number, the algorithm will 
do no more than d -1 iterations.  We proved in Section 4.2 that the (d+1)st Fibonacci number is 
greater than or equal to 1.5d−1 and we showed how to modify that proof to obtain the sharper 
bound (1+ 5)/ 2( )d−1, which is never attained for d ≥ 2 because a Fibonacci number is an 

integer and (1+ 5)/ 2( )d−1 isn’t an integer.  If n ≤ (1+ 5)/ 2( )d−1, which is about 1.61d−1, then 
the algorithm will do at most d -1 iterations; so the number of iterations can never exceed the 
inverse function, which is the logarithm of n to the base of about 1.61.  By changing the base to 
10, Lamé proved that the number of iterations cannot exceed five times the number of decimal 
digits of n.  For our purposes it suffices to observe that the number of operations done by this 
algorithm is in O( log n ). 

 So now we have two algorithms for computing GCD(a,b): factorization, which runs in 
O( n ) operations using the naïve algorithm presented here and for which no known algorithm 
runs in any power of log n , and the Euclidean algorithm, which runs in O( log n ).  To choose 
between those two algorithms, you have to be able to analyze them both and to know that log n  
grows slower than any positive power of n, so that for big n the Euclidean algorithm runs faster 
than any algorithm that includes factorization.  The more mathematics you know, the better you 
will be at choosing the fastest algorithm to solve your problems! 

 Earlier in this section, I promised that at the end of the chapter I would tell you who 
Caesar’s mysterious, ferocious enemy is.  It’s Xena, the warrior princess, who commands an 
army of Amazons.  In the episode that inspired that anecdote, she doesn’t command an army of 
Amazons.  Instead, she tricks Caesar and Pompeii into fighting each other so that their armies 
would destroy each other, like the two giants who get tricked by the little tailor, and would no 
longer be strong enough to menace the community she wants to save.  Fortunately for her, 
nobody in either Caesar’s or Pompeii’s army is wise to her trick; so the generals in the field obey 
their respective leaders’ instructions to commence hostilities, unlike the general in my anecdote, 
and it's the crafty Xena who emerges victorious. 


